
OPEN-R Essentials

by Ricardo A. Téllez, v1.0

4th September 2004

1

Contents

1 Introduction and description 3
1.1 Objects description . 3
1.2 Object communication . 4
1.3 System objects . 5
1.4 The graphic formalism . 5
1.5 The ball tracking example . 7

1.5.1 BallTrackingHead7 object 7
1.5.2 SoundAgent object . 8
1.5.3 MoNet object . 8
1.5.4 MotionAgents object . 9
1.5.5 Other objects . 9

2 Main structure description and implementation 14
2.1 The base class . 14

2.1.1 DoInit() . 15
2.1.2 DoStart() . 16
2.1.3 DoStop() . 17
2.1.4 DoDestroy() . 17
2.1.5 Constructor of ASampleClass 17

2.2 Communications between objects 19
2.2.1 Sending a message . 20
2.2.2 Receiving a message . 20
2.2.3 The stub.cfg config file . 21
2.2.4 The connect.cfg config file 22

3 Interaction with sensors and actuators 24
3.1 Sensors and actuators primitives . 24
3.2 Frames . 25
3.3 Reading sensor values . 25

3.3.1 Description of the OSensorFrameVectorData message 25
3.3.2 Accessing a sensor value . 26

3.4 Sending commands to actuators . 28
3.4.1 Description of the OCommandVectorData message 28
3.4.2 Sending a command to an effector 29

2

1 Introduction and description

OPEN-R SDE is the C++ environment provided by Sony to program their Aibo robots.
It consists of a group of APIs, file structures and compilation tools that allow the cre-
ation of control programs for the robot from a Windows, Macintosh or Linux platform.
An OPEN-R program consists of a set of objects that are executed concurrently on the
robot, plus a set of configuration files that specify how those objects must interact. The
objects are cross-compiled in the host machine producing Aibo code. This code is then
transferred to a memory stick that is inserted on the Aibo robot and executed on it.
OPEN-R SDE provides of all the tools required for all those tasks.

Before continuing, please install the OPEN-R SDE on your computer. This text
does not include an installation guide of the OPEN-R SDE and it will only focus on the
explanation of the OPEN-R interface. This text will concentrate on development from
a Linux machine, but all platforms follow almost the same steps. Refer to the official
OPEN-R documentation or to the Aibo quick-start guide1 for installation instructions
and additional information for other platforms.

1.1 Objects description

An OPEN-R object could be defined as a process running on Aibo. An OPEN-R
program is just a set of those objects running concurrently (in parallel). OPEN-R ob-
jects communicate with each other in order to coordinate. Thus, a program to control
Aibo will consist of a set of OPEN-R objects, each object performing its own job but
coordinating with the other objects by using message passing. An OPEN-R object cor-
responds to one executable file for Aibo created at compile-time. When Aibo boots,
all the compiled objects are loaded into memory and started as concurrent processes.
Their message interchange will determinate the flow of action.

OPEN-R objects behave in a similar way to that of a finite state automaton: each
object is composed of a set of internal states. Transitions govern the change between
states. Having this idea in mind, François Serra and Jean-Christophe Baille at ENSTA
developed a useful mechanism for a graphical description of the workings of an object.
We will borrow here their methodology in order to describe the insights of OPEN-R
objects in a graphical way2.

During our OPEN-R description and explanation, we will describe and use the
BallTrackingHead7 sample program as an example. This program, included in the
OPEN-R SDE makes Aibo look for its pink ball and play some sound when detected
or lost. On that example, the program is composed of four main objects: BallTrack-
ingHead, MovingLegs, MovingHead and LostFoundSound (there are also three other
special objects on the play, that are described in sections 1.3 and 1.5.5).

The behaviour of every object is described as the transition between its internal
states. Each object is based on its present state and the transitions that lead to other
states. This means that an object will be always on a state.

1Made by the same author of this document and available at http://www.ouroboros.org/~rt71592
2All credit for the development of the method goes to the mentioned authors. For more information on

their methodology, please check their original work titled Aibo programming using OPEN-R SDK, that can
be found at http://www.ensta.fr/~baillie/openr_tutorial.html

3

The design of an object is the design of its required states, transitions and functions
to apply when going from one state to another. This design can be really helped by
the previous design by using the Serra-Baille charts, in a similar way as UML helps
software design.

Summarising, to design an object, it must be specified its internal states. An object
can be only in one state at a time. Objects change their state by means of transitions.
Transitions are activated by the reception of messages, and can have several paths going
to several states. Only the path that satisfies the condition will be taken. Conditions
must be exclusive in order to not allow the object be in two different states at the same
time.

1.2 Object communication

Objects communicate with each other by message passing. In every inter-object com-
munication the sender of the message is called the subject and the receiver is called
the observer. An object can act as subject in one situation but as observer in another
one. It just depends on the situation.

The communication channel between two objects is unidirectional (each channel
has a fixed subject and a fixed observer). It means that, if bidirectional communication
is required between two objects, then two different channels will be required. Also, an
object can have different subjects and be the observer of several objects, but a commu-
nication channel will be required for each one. Messages go out of the object and come
in through gates. There is a gate in the object for each communication channel.

Since objects are single threaded, it means that they can only process one single
message at a time. For this purpose, a message queue is implemented in every object,
where messages wait their turn to be processed.

The main flow execution of an object is the following:

1. The object is initialised. Then it sends an AR message to all its subjects.

2. The object waits on a determined state the arrival of a message coming from one
of its subjects

3. Once the message arrives, the method associated to that message is activated.
Within that method, the message is processed

4. Once finished the processing, the object sends an AR message to the subject
indicating that is already ready to receive new messages

5. It returns to point 2.

AR messages are special messages defined within OPEN-R. These messages, whose
complete name is ASSERT_READY, are part of the synchronisation protocol used to
let the observer notify the subject that it is ready to receive new messages. This is
usually done after the last received message has been processed.

Messages sent between objects can be of any C++ primary type, or an array, an
structure, a class or a pointer. However, their length is limited to the size of OCom-
mandVectorData (more on this on chapter 3). For this reason, it is a common technique

4

to send pointers to common shared memory as messages, and put on that shared mem-
ory the information that wants to be sent.

1.3 System objects

Together with the objects created by the designer of the program, there exist other
objects already created by OPEN-R that allow the access to the hardware of the robot.
It means that access to sensors or actuators will be done through an OPEN-R object
provided by the system. Those objects are:

� OVirtualRobotComm: it interfaces with the robot joints, sensors, LEDs and cam-
era

� OVirtualRobotAudioComm: it interfaces with the robot audio devices for record-
ing of playing sounds

The use of those objects in the programs is the same as the use of programmer defined
objects. Some input and output points (the gates) in those objects are already defined
to send and receive messages from/to them.

1.4 The graphic formalism

The graphic formalism for the description of the objects will be described here. This
formalism will be of great help when designing OPEN-R programs, since all the re-
quirements would be specified by using a king of graphic chart, in the same way as
UML can be used for the description of general C++ programs.

First, the object is defined by a big square. That square will contain all the rest of
information that defined the insights of the object. States of the object are represented
by circles containing their state name. Transitions between states are expressed by
using arrow lines with a black square in the middle. Those arrow lines contain several
other information:

� The transition event: transitions between states are activated by the reception of
messages from other objects.

� The transition condition: the reception of a message (event) can trigger different
transitions going to different states. The transition to one state or another will
depend on which of the paths satisfies the condition specified on top of the black
square. Transition conditions must be exclusive, since one state cannot lead to
two different states at the same time.

� The code execution: If there exist a subroutine name specified bellow the black
square, then its code must be executed.

� The message to send: If there exists a dotted arrow line going out of the line,
then a message must be sent.

5

Figure 1: An example of design diagram of the MotionAgents object from the Ball-
TrackingHead7 program

6

Messages are represented by dotted arrow lines. Messages coming from another
object, enter the object via gates. Gates are represented by a trapezoid form entering
the object or going out of it (the arrow indicates its direction). Gates have several data
on its top:

� The first word is the name of the gate

� Second word is the type of message that will go trough that gate

� Third, if it exists, will be the name of the function to be executed when a message
is received (in the case of an incoming gate), or when an AR is received (in the
case of an outgoing gate)

In order to simplify the scheme, messages received from OVirtualRobotComm and
OVirtualRobotAudioComm are represented using a special trapezoid box. Those trape-
zoid box contain two words: OVRC and AR, when the message comes from the OVir-
tualRobotComm, or OVRAC and AR, when the message comes from the OVirtual-
RobotAudioCom. Those boxes represent the reception of a message coming from one
of those virtual objects. Instead of drawing a dotted message line coming from the
virtual objects to the point in the object where the message is received, the authors of
the method have decided to use that trapezoid box for the sake of simplicity, but the
meaning is the same a dotted line, it is, the reception of an AR message.

1.5 The ball tracking example

The ball tracking example is one of the program examples provided by Sony. It is called
BallTrackingHead7 and consists of four main objects. The program has the following
behaviour: first, it starts an initialisation stage where the legs and the head of the robot
are brought to an initial position. From that position, the robot stands up. Once it is
up, the robot starts searching for the ball moving its head around. If the ball is found,
then a sound is played and Aibo focus its attention to the ball. If the ball is lost, then
another sound is played and Aibo starts looking again for it.

In this program the BallTrackingHead7 object is the leading object. It orchestrates
the actuation of the rest of objects and decides when they must act. It is not necessary to
have such a leading object in OPEN-R programs, but it is usually used for convenience.

1.5.1 BallTrackingHead7 object

This object consists of six main states (fig. 2). The object is initialised in BTHS7_IDLE
state, but it automatically moves to the BTHS7_WAITING_STAND2STAND_RESULT
state. By doing that transition, a message is sent to the MoNet object. That message
says to the object that it must perform their movement tasks in order to bring Aibo to
the stand up position. The BallTrackingHead7 object waits for a reply message from
the MoNet, indicating that the movement task is complete. When received the message,
the object will change to the BTHS7_SEARCHING_BALL state, releasing a message
to the OVirtualRobotComm object making it to move Aibo’s head around its space.

7

The object will remain on that state until it founds the ball. The detection of the
ball is done by looking at the messages received from the Image incoming gate. That
message comes from the OVirtualRobotComm object containing an image (of type OF-
bkImageVectorData). Once received that message the object can follow two different
paths:

1. If the pink colour is detected and greater than a BALL_THRESHOLD thresh-
old, then it would mean that the ball is present and the image counter for balls
found is incremented. Then, if the found counter exceeds the found thresh-
old FOUND_THRESHOLD the object changes to BTHS7_TRACKING_BALL
state and sends two messages to MoNet object: one to play a sound and another
to move the head towards the ball.

2. If the pink colour is not detected then the found counter is set to zero and the
object returns to its BTHS7_SEARCHING_BALL state, waiting for another im-
age.

Once in the BTHS7_TRACKING__BALL state the robot follows a similar behaviour
to that of the BTHS7_SEARCHING_BALL state. It will continue on that state as long
as the images received from OVirtualRobotComm indicate that the ball is still there.
Once the ball is lost, the object will change to the BTHS7_SEARCHING_BALL state
and play a sound, following the same sequence presented for the BTHS7_SEARCHING_BALL
state. The BallTrackingHead7 object will keep changing its state from SEARCHING
BALL to TRACKING BALL and vice-versa during the time the program is run.

There also exists a wild-card (*) state in this object. This state means that in any
state, when received the specified message, some actions will be performed that do not
change the current state of the object. In this case, when a message is received from
OVirtualRobotComm through the Sensor gate an update of the sensor regions will be
performed.

1.5.2 SoundAgent object

This objects is responsible for playing sounds when required by the MoNet object. It
starts in SAS_IDLE state an after initialisation it switches to SAS_START state. The
object will wait on that state until it receives a message from the MoNet object indicat-
ing that a sound must be played. At this point, the object changes to SAS_PLAYING
state, where it waits for the OVirtualRobotAudioComm to send an AR message indi-
cating that it is ready to receive some WAV data to play the sound. When ready, the
object sends to it the data to be played until everything has been sent (played). Once the
memory has been released of the WAV data, then the object returns to the SAS_START
state waiting for another message from MoNet object to play more sounds.

1.5.3 MoNet object

This object is in charge of doing all the job related to movement and sound playing.
For example, it is in charge of bringing Aibo to the standing position. Every time

8

that a position must be reached, this object receives a message indicating what po-
sition needs to be achieved. The object loads then the step movements required and
performs it. It also has care of playing sounds. The object starts in MNS_IDLE state
and changes to MNS_START automatically. It stays there until a message arrives from
the BallTrackingHead7 object via the ClientCommand gate. After checking that the
command received is valid, the object starts performing the action required. It sends
then the required orders to SoundAgent and/or to MotionAgents and changes to state
MNS_AGENT_RUNNING. The object will remain in that state until it receives a mes-
sage from the previous objects indicating that the action has been completed. In that
case, the object sends a result message to the BallTrackingHead7 object indicating it
has finished, and returns to its stay state (MNS_START).

1.5.4 MotionAgents object

This object is in charge of sending the correct orders to the OVirtualRobotComm object
in order to bring Aibo to the standing position. It starts in MAS_IDLE state an changes
to MAS_START automatically. There, it wait for a message from MoNet object that
requests the implementation of the movement. Then the object communicates with
OVirtualRobotComm sending the correct orders to move Aibo to the desired position.
Once it finishes the movement, it sends a message to MoNet and waits in MAS_START
state for another command from MoNet.

1.5.5 Other objects

Three other objects are required in order to handle with some useful specific task.
Those objects are the following:

� OVirtualRobotComm: as has been explained before this object is part of the
operating system and must not be created or included. It is in charge of accessing
the sensors and actuators of the robot.

� OVirtualAudioComm: this object is in the same situation as the previous one. It
is in charge of the audio interaction of the robot.

� PowerMonitor: this object handles all the stuff related to switching off the robot.
It is also included as an example from Sony, and automatically included when
compiling the ball tracking example. You should include this object explicitly
in your programs in order to be able to shutdown Aibo, but for the ball tracking
example it is included automatically by the makefile. Its mission is to check for
some conditions that may require the shutdown of the robot, like, battery level
and temperature, pressing the pause button, connecting to the charging station,
etc.

9

Figure 2: Diagram of the BallTrackingHead7 object

10

Figure 3: Diagram of the MoNet object

11

Figure 4: Diagram of the SoundAgent

12

Figure 5: Diagram of the MotionAgents

13

2 Main structure description and implementation

On chapter one a methodology to graphically describe the behaviour of an OPEN-R
program was explained. Now it is time to code all that information into C++ code
that will generate the Aibo controller. This chapter describes how to transfer the ideas
expressed in the graphical method to computer code. The BallTrackingHead7 program
will be used to describe the different steps.

The flow of development for an OPEN-R includes the following steps:

1. Design of the objects: this steps includes the design of the required objects for
the program to develop, including the flow of data between them and the type of
messages interchanged. The graphical method explained on chapter one must be
used here.

2. Description of the gates: for every object a stub.cfg file must also be created.
This contains a description of the object gates and how they connect. More on
this on section 2.2.3

3. Implementation of the object: creation of the C++ object that will define the
OPEN-R object, including some virtual functions (see section 2.1) and the ones
specified in the stub.cfg file.

4. Build the executable: generate all the compiled objects.

5. Edit some configuration files: some additional files will require modification to
include how objects connect with each other (CONNECT.CFG file) and which
objects must be executed (OBJECT.CFG file).

6. Execute and debug in Aibo: after transferring the program to the memory stick,
some errors may arise. They can be traced by using the wireless console and
inserting some comments in the code.

As has been presented in the previous chapter, an OPEN-R program is a event-oriented
one. Every object is basically composed of a set of routines that will act as an answer
to several events. That is the idea to have in mind when designing an Aibo program.

2.1 The base class

The base class is the C++ class that will represent an object in OPEN-R. Each object
created by the programmer will inherit from the base class and will be represented
by only one of those class. The base class name is OObject and contains 4 virtual
functions:

� OStatus DoInit (const OSystemEvent& event)

� OStatus DoStart (const OSystemEvent& event)

� OStatus DoStop (const OSystemEvent& event)

� OStatus DoDestroy (const OSystemEvent& event)

14

Those functions perform some basic functions that will guide the start-up of the object
and its shutdown, and they must be implemented in the code of the programmer’s ob-
ject. Most of the code of those functions will be handled by some macros provided by
OPEN-R. DoInit and DoStart are initialisation functions. They are called automatically
by this order by OPEN-R once the object has been loaded into memory. DoStop and
DoDestroy are called when OPEN-R is shutting down Aibo.

When creating an OPEN-R object, it inherits from the base class. The new object
created has to redefine the previous virtual functions inside its object construction code.
That code has also to define two other things:

1. In order to be able to communicate with other objects, the constructor of the class
must define two arrays, one that will contain a list of the subjects (called subject)
and another for the list of the observers (called observer). The programmer has
just to care about defining those arrays and use them, but all the construction and
filling process is done automatically by the virtual functions described above (see
below).

2. The constructor of the object must indicate its starting state (usually, it starts in
IDLE state), and how many other states do exist for that object.

2.1.1 DoInit()

This function is called when the object is just loaded in the memory of Aibo. It sets up
all the gates of the object and registers all its observers and subjects. In order to do all
those tasks easily, OPEN-R provides some macros that perform the job.

The following code is a skeleton for the function

OStatus ASampleClass::DoInit(const OSystemEvent& event)
{

/* OPEN-R macros */
/* registers observers and subjects */
NEW_ALL_SUBJECT_AND_OBSERVER;
/* registers connection to services offered

by other objects*/
REGISTER_ALL_ENTRY;

/* registers entry points for receiving messages */
SET_ALL_READY_AND_NOTIFY_ENTRY;

/* Specific code for the ASampleClass goes here */
return oSUCCESS;

}

The following code is the DoInit function of the BallTrackingHead7 object:

OStatus BallTrackingHead7::DoInit(const OSystemEvent& event)

15

{
OSYSDEBUG(("BallTrackingHead7::DoInit()\n"));
/* OPEN-R macros */
NEW_ALL_SUBJECT_AND_OBSERVER;
REGISTER_ALL_ENTRY;
SET_ALL_READY_AND_NOTIFY_ENTRY;

/* Specific code for the BallTrackingHead7 example */
OpenPrimitives();
NewCommandVectorData();
SetCdtVectorDataOfPinkBall();
return oSUCCESS;

}

2.1.2 DoStart()

This function is called once DoInit is finished in all the existing objects. This function
sends an AR message to all its observers, and changes from IDLE state to the next state
required. The general code:

OStatus ASampleClass::DoStart(const OSystemEvent& event)
{

/* the programmer code goes here */

state = /* the required state, usually START*/ ;
/* the OPERN-R macros */
ENABLE_ALL_SUBJECT;
ASSERT_READY_TO_ALL_OBSERVER;
/* code can be also added here */
return oSUCCESS;

}

For the BallTrackingHead7 object:

OStatus BallTrackingHead7::DoStart(const OSystemEvent& event)
{

OSYSDEBUG(("BallTrackingHead7::DoStart()\n"));
Execute(STAND2STAND_NULL);
state = BTHS7_WAITING_STAND2STAND_RESULT;
ENABLE_ALL_SUBJECT;
ASSERT_READY_TO_ALL_OBSERVER;
return oSUCCESS;

}

16

2.1.3 DoStop()

This function is called when a shutdown is been performed. The object must return
itself to the IDLE state, and to deactivate gates. It also sends a DEASSERT_READY
message to the observers, indicating that the object cannot receive more messages.

OStatus ASampleClass::DoStop(const OSystemEvent& event)
{

/* programmer’s code goes here */
state = IDLE;
/* OPEN-R macros*/
DISABLE_ALL_SUBJECT;
DEASSERT_READY_TO_ALL_OBSERVER;
/* programmer’s code goes here */
return oSUCCESS;

}

For the BallTrackingHead7 object:

OStatus BallTrackingHead7::DoStop(const OSystemEvent& event)
{

OSYSDEBUG(("BallTrackingHead7::DoStop()\n"));
state = BTHS7_IDLE;
DISABLE_ALL_SUBJECT;
DEASSERT_READY_TO_ALL_OBSERVER;
return oSUCCESS;

}

2.1.4 DoDestroy()

This function is called after DoStop has been called in all objects. It just deletes all
subjects and observers and ends the object. This function usually remains as in the
example.

OStatus ASampleClass::DoDestroy(const OSystemEvent& event)
{

DELETE_ALL_SUBJECT_AND_OBSERVER;
return oSUCCESS;

}

2.1.5 Constructor of ASampleClass

Here it is a complete description of our object ASampleClass. You can use the code
below as a starting template for your own objects.

17

� First, the definition of the header file ASampleClass.h

#ifndef ASampleClass_h_DEFINED
#define ASampleClass_h_DEFINED
#include <OPENR/OObject.h>
#include <OPENR/OSubject.h>
#include <OPENR/OObserver.h>
#include <OPENR/ODataFormats.h>
/* def.h is defined by the compiler during compilation */
#include “def.h”
/* enumerate the states of the object */
enum ASampleClassStates { IDLE,
/* add here your states */
};
class ASampleClass : public OObject {
public:

ASampleClass();
virtual ~ASampleClass() {}

/* the following are the arrays of observers and subjects

numOfSubject and numObserver are defined during
compilation */

OSubject* subject[numOfSubject];
OObserver* observer[numObserver];

virtual OStatus DoInit (const OSystemEvent& event);

virtual OStatus DoStart (const OSystemEvent& event);

virtual OStatus DoStop (const OSystemEvent& event);

virtual OStatus DoDestroy (const OSystemEvent& event);
private:

ASampleClassStates aSampleClassState;
};
#endif // ASampleClass_h_DEFINED

� Second, the code of the class

ASampleClass::ASampleClass ()
{

aSampleClassState = IDLE;
}
OStatus ASampleClass::DoInit(const OSystemEvent& event)
{

/* OPEN-R macros */

18

/* registers observers and subjects */
NEW_ALL_SUBJECT_AND_OBSERVER;
/* registers connection to services offered

by other objects*/
REGISTER_ALL_ENTRY;

/* registers entry points for receiving messages */
SET_ALL_READY_AND_NOTIFY_ENTRY;

/* Specific code for the ASampleClass goes here */
return oSUCCESS;

}
OStatus ASampleClass::DoStart(const OSystemEvent& event)
{

/* the programmer code goes here */

state = /* the required state, usually START*/ ;
/* the OPERN-R macros */
ENABLE_ALL_SUBJECT;
ASSERT_READY_TO_ALL_OBSERVER;
/* code can be also added here */
return oSUCCESS;

}
OStatus ASampleClass::DoStop(const OSystemEvent& event)
{

/* programmer’s code goes here */
state = IDLE;
/* OPEN-R macros*/
DISABLE_ALL_SUBJECT;
DEASSERT_READY_TO_ALL_OBSERVER;
/* programmer’s code goes here */
return oSUCCESS;

}
OStatus ASampleClass::DoDestroy(const OSystemEvent& event)
{

DELETE_ALL_SUBJECT_AND_OBSERVER;
return oSUCCESS;

}

2.2 Communications between objects

For the communication between different objects, several issues must be taken into
account. First, a way of identifying the subject must be provided. For this reason,
OPEN-R creates during compile time two different arrays that allow the programmer
to access subjects and observers: the subject[] array and the observer[] array. Second,
OPEN-R also defines a set of indexes for easy access to the array. Those indexes are

19

also generated at compile time based on the information provided in the stub.cfg file.
The stub.cfg file contains information about the gates (also called services) of the object
(more about this file in section 2.2.3). Since every gate has a name, the array indexes
are created in the following way: every index is identified by a name. The index name
is formed by the concatenation of the type of the service (sbj for subject and obs for
observer) and the name of the gate. Then, for the BallTrackingHead7 object, there
is an outgoing gate called Command that connects the object with MoNet. If it were
necessary to access that subject, the sentence would be subject[sbjCommand].

2.2.1 Sending a message

The following steps are required to send a message to an observer:

1. Initialise the message’s content

2. Assign the message to the service

3. Notify the observer

Here is how to implement those functions inside a program (in this case, the BallTrack-
ingHead7 object sends a command to the MoNet object):

void BallTrackingHead7::Execute(MoNetCommandID cmdID)
{

/* creates the message and initialises its content */
MoNetCommand cmd(cmdID);
/* assigns the message to a service */
/* (in this case, a service called Command */

subject[sbjCommand]->SetData(&cmd, sizeof(cmd));
/* notifies the observers */
subject[sbjCommand]->NotifyObservers();

}

2.2.2 Receiving a message

The following steps are required to receive a message:

1. Retrieve message’s content by casting it

2. Process the message

3. Send an AR message to the subject that sent the message

Here is how to implement those functions

20

void BallTrackingHead7::NotifyResult(const ONotifyEvent& event)
{

/* retrieve a message of type MoNetResult comming
from the Result gate */

MoNetResult* result = (MoNetResult*)event.Data(0);
...

/* sends an AR message to the subject that sent
the message. This must be done when all the
processing of the message has finished */

observer[event.ObsIndex()]->AssertReady();
}

It must be paid attention to two things:

1. The observer array is accessed through an index obtained from the message it-
self, and not using the typical obsXXX pattern.

2. The name of the function defined here. This function is activated whenever a
message comes from a subject through a gate. To specify which functions must
activate to which messages the stub.cfg file must be created.

2.2.3 The stub.cfg config file

The stub.cfg file is the file that describes how the object connects with other objects. It
describes the gates, including all the information explained in section 1.4 to completely
describe a gate. Every object has its own stub.cfg file, an the information of this file
will be used by the compiler when building the binaries. The file must be placed in the
same directory where the C++ object program resides.

Here there is an example of stub.cfg file:

ObjectName : BallTrackingHead7
NumOfOSubject : 2
NumOfOObserver : 3
Service : "BallTrackingHead7.Command.MoNetCommand.S", null, null
Service : "BallTrackingHead7.Result.MoNetResult.O", null, NotifyResult()
Service : "BallTrackingHead7.Sensor.OSensorFrameVectorData.O", null, NotifySensor()
Service : "BallTrackingHead7.Image.OFbkImageVectorData.O", null, NotifyImage()
Service : "BallTrackingHead7.Joint.OCommandVectorData.S", null, null

The first line describes the name of the object. Second and third line describe the num-
ber of subjects and observers the object has. Lines starting by Service are the ones that
describe the information included in the label gates of section 1.4. For example, in line

21

Service : "BallTrackingHead7.Result.MoNetResult.O", null, NotifyResult()

BallTrackingHead7 is the name of the current object. Result is the name of the gate the
message will go through. MoNetResult is the type of message been interchanged, and
O means that the gate is incoming (the current object is an observer). If the object was a
subject then the last field should say S. The null is the name of a function to be executed
when a connection result is received. Most of the cases is null. The NotifyResult is the
name of the function to be executed when an AR or a message is received through this
gate.

2.2.4 The connect.cfg config file

The connect.cfg file is a configuration file that specifies how objects interconnect to
each other. This is a unique file per program and it must be placed in the OPEN-
R/MW/CONF/ directory of the memory stick. But before going into the description of
the file, it is a good practice to generate a connection graphic containing the information
that needs to be coded into the file. Together with the graphic formalism described in
chapter 1 perform a powerful mechanism for easy design and comprehension.

In the figure 6 can be see the connections graphic for the BallTrackingHead7 pro-
gram. In it, each object acting is represented by a circle with its name. Arrows go from
subjects to observers an indicate the name of the gates they go through.

Figure 6: Graphic representation of the connect.cfg file of the BallTrackingHead7 pro-
gram

The connect.cfg file for the BallTrackingHead7 program is the following:

22

#
BallTrackingHead7 <--> MoNet
#
BallTrackingHead7.Command.MoNetCommand.S MoNet.ClientCommand.MoNetCommand.O
MoNet.ClientResult.MoNetResult.S BallTrackingHead7.Result.MoNetResult.O
#
BallTrackingHead7 <-> OVirtualRobotComm
#
OVirtualRobotComm.FbkImageSensor.OFbkImageVectorData.S BallTrackingHead7.Image.OFbkImageVectorData.O
OVirtualRobotComm.Sensor.OSensorFrameVectorData.S BallTrackingHead7.Sensor.OSensorFrameVectorData.O
BallTrackingHead7.Joint.OCommandVectorData.S OVirtualRobotComm.Effector.OCommandVectorData.O
#
MoNet <--> MotionAgents
#
MoNet.MotionAgentCommand.MoNetAgentCommand.S MotionAgents.Command.MoNetAgentCommand.O
MotionAgents.Result.MoNetAgentResult.S MoNet.AgentResult.MoNetAgentResult.O
#
MoNet <--> SoundAgent
#
MoNet.SoundAgentCommand.MoNetAgentCommand.S SoundAgent.Command.MoNetAgentCommand.O
SoundAgent.Result.MoNetAgentResult.S MoNet.AgentResult.MoNetAgentResult.O
#
MotionAgents --> OVirtualRobotComm
#
MotionAgents.Effector.OCommandVectorData.S OVirtualRobotComm.Effector.OCommandVectorData.O
#
SoundAgent --> OVirtualRobotAudioComm
#
SoundAgent.Speaker.OSoundVectorData.S OVirtualRobotAudioComm.Speaker.OSoundVectorData.O

Lines starting by # are comments, and usually describe the connection between objects
being described below. Each no-comment line specifies one connection, starting by the
name of the subject and ending by the name of the observer. For example:

BallTrackingHead7.Command.MoNetCommand.S MoNet.ClientCommand.MoNetCommand.O

specifies how the BallTrackingHead7 object connects with the MoNet object, acting
the first as the subject and the second as the observer. For bi-directional connections,
the configuration file must contain two lines, one for each direction of the connec-
tion (as happens with the BallTrackingHead7 and MoNet objects connection). The
definition of each part of the line follows the same specification as for the stub.cfg file
described before. Special attention must be paid to assure that in one line, the messages
exchanged between subject and observer have the same type.

23

3 Interaction with sensors and actuators

This chapter describes how to obtain values sensed by Aibo’s sensors and how to send
commands to its actuators (joints and LEDs). All this process will be achieved by
interacting with the virtual object OVirtualRobotComm provided by OPEN-R. Special
treatment is required for the sound (which uses OVirtualRobotSound object).

3.1 Sensors and actuators primitives

In Aibo, every sensor and actuator are also called primitives. Each primitive has its own
primitive locator to access to it. The primitive locator is like the path or the address
you must follow to reach the desired sensor or actuator. A list of the available primi-
tive locators is provided by Sony on its Model Information documentation. Primitive
locators look like this:

PRM:/r1/c1/c2/c3-Joint2:13 <– primitive locator for the HEAD TILT2 motor of
ERS-7

The primitive locator cannot be used directly to access the sensor or actuator. In-
stead of it, the primitive ID must be used. The primitive ID is a number that identifies
the sensor/actuator within the data structures returned by OVirtualRobotComm (see
section 3.2). Because of that, a translation from the primitive locator to the primi-
tive ID must be performed. Even that Sony also provides a conversion table on its
documentation, it is recommended not to use it, since it may change for future robot
models. Instead of that, an on-line conversion is recommended. Instead it can be used
the OPENR::OpenPrimitive3 static function in order to perform such conversion. Usu-
ally such conversion is done once during initialisation phase and the results stored in
an array for later use.

Example:

void BallTrackingHead7::OpenPrimitives()
{

OStatus result;
for (int i = 0; i < NUM_JOINTS; i++)
{

result = OPENR::OpenPrimitive(JOINT_LOCATOR[i], &jointID[i]);
if (result != oSUCCESS)
{

OSYSLOG1((osyslogERROR, "%s : %s %d","BallTrackingHead7::OpenPrimitives()", "OPENR::OpenPrimitive() FAILED", result));
}

}

result = OPENR::OpenPrimitive(FBK_LOCATOR, &fbkID);
if (result != oSUCCESS)

3This function also performs some initialisation job, so it must be called once in the program before
accessing the sensor/actuator. This is usually done during the initialisation of the object.

24

{

OSYSLOG1((osyslogERROR, "%s : %s %d","BallTrackingHead7::OpenPrimitives()", "OPENR::OpenPrimitive() FAILED", result));
}

}

3.2 Frames

Aibo’s time is divided in frames. A frame is the unit of time and represents 8 ms.
Information from sensors is retrieved by blocks of n frames (usually, 4 frames), which
are contiguous in time. Commands to effectors are also sent in blocks of frames, it is,
when you send a command to an effector, you must provide the commands for the next
n frames of time.

3.3 Reading sensor values

In order to read a value from a sensor, it will be necessary to obtain messages sent
by the OVirtualRobotComm through its gate named Sensor. Through that gate, OVir-
tualRobotComm sends a message of type OSensorFrameVectorData that contains all
information related to the robot sensors. Therefore, the first step to catch that message
would be to refer to the subject in the connect.cfg file using the following line:

OVirtualRobotComm.Sensor.OSensorFrameVectorData.S your_observer

An additional line must be also added to the stub.cfg file of the observer, indicating
the name of the routine that will handle the message. The contents of the message is
treated in the next section.

3.3.1 Description of the OSensorFrameVectorData message

The OSensorFrameVectorData is a data structure that accommodates all the required
information to obtain Aibo’s sensors states. It is formed by three main groups of data:

1. vectorInfo: It is another structure of data of type ODataVectorInfo. It contains
the numData and maxNumData values. numData contains the number of sensors
whose values are included in the structure (have been sensed).

2. OSensorFrameInfo: it is an array of data structures. The structure contains in-
formation that identifies the sensor

3. OSensorFrameData: it is another array of data structures of the same length as
OSensorFrameInfo. Each OSensorFrameInfo, has its correspondent OSensor-
FrameData. While OSensorFrameInfo identifies the sensor that is being read,
OSensorFrameData contains its values sensed. Values are specified in a struc-
ture to allow the allocation of different frames.

25

Each cell of OSensorFrameInfo has a correspondent cell in OSensorFrameData. It
means that the information in frame n of OSensorFrameInfo is related to the info of
frame n in OSensorFrameData. Those two have the information related to a given
sensor during the last frames.

struct OSensorFrameVectorData
{
ODataVectorInfo vectorInfo;
struct OSensorFrameInfo[];
array OSensorFrameData [];
}
struct OSensorFrameInfo
{
ODataType type;
OPrimitiveID primitiveID;
longword frameNumber;
size_t numFrames;
}
struct OSensorFrameData
{
OSensorValue frame[];
}

vectorInfo
vectorInfo contains two values: numData and maxNumData. The two arrays OSen-

sorFrameInfo and OSensorFrameData have an allocated memory size equal to maxNum-
Data, but their actual size is that indicated by numData, it is, only numData sensors will
have their values put in the OSensorFrameData array.

OSensorFrameInfo
Data from this array is available by using the GetInfo (int index) function. By

using that function, the user obtains a OSensorFrameInfo structure that contains several
information: type is a variable of class ODataType and contains the type of sensor
been access. primitiveID is a variable of type OPrimitiveID and contains the primitive
ID of the sensor been access. frameNumber is a longword containing a tag number
that identifies the first frame on its associated OSensorFrameData cell. numFrames
indicates the number of frames that are valid in the associated OSensorFrameData cell.

OSensorFrameData
Data from this array is available by using the GetData (int index) function. By using

that function, the user obtains a group of frames containing OSensorValue structures.
These structures are generic data ones for sensor values. This means that every sensor
will send their values in a subclass of OSensorValue. Usually a cast to the correct
subclass is performed when retrieving a sensor value.

3.3.2 Accessing a sensor value

The main steps to access a sensor value are the following:

26

1. A OSensorFrameVectorData is received from OVirtualRobotComm

2. Get the primitive ID corresponding to the sensor to access. A complete list of
the desired sensor IDs is usually created during initialisation by the programmer
(see section 3.1), so a retrieve of the list will do it.

3. Compare the obtained primitive ID with the ones that are in the primitiveID
field of the OSensorFrameInfo array. Once matched, the index within that array
provides the index within the OSensorFrameData array that contains the sensor
value. You can store this index in a user array since it will not change during the
execution of the OPEN-R program (see the example below).

4. Use the index obtained to access the sensor value in OSensorFrameData.

5. Do not forget to send an AR message after processing the data, to indicate that
you can now receive another sensor message if available.

Example-1: creating the correspondence table between primitive ID and index within
OSensorFrameData

void BallTrackingHead7::InitSensorIndex(OSensorFrameVectorData* sensorVec)
{

for (int i = 0; i < NUM_JOINTS; i++)
{

for (int j = 0; j < sensorVec->vectorInfo.numData; j++)
{

OSensorFrameInfo* info = sensorVec->GetInfo(j);
if (info->primitiveID == jointID[i])
{

sensoridx[i] = j; OSYSDEBUG(("[%2d] %s\n", sensoridx[i], JOINT_LOCATOR[i])); break;
}

}
}

}

Example-2: accessing a value

void BallTrackingHead7::NotifySensor(const ONotifyEvent& event)
{

RCRegion* rgn = event.RCData(0);
if (initSensorIndex == false)
{

27

OSensorFrameVectorData* sv = (OSensorFrameVectorData*)rgn->Base();
InitSensorIndex(sv);
initSensorIndex = true;

}

if (sensorRegions.size() == NUM_SENSOR_VECTOR)
{

sensorRegions.front()->RemoveReference();
sensorRegions.pop_front();

}
rgn->AddReference();
sensorRegions.push_back(rgn);
observer[event.ObsIndex()]->AssertReady();

}

3.4 Sending commands to actuators

Sending commands to the Aibo actuators (these are motors and LEDs), requires to send
a message of type OCommandVectorData to the OVirtualRobotComm via its incom-
ing gate, named Effector (remember that the outgoing gate, from where values sensed
come, was called Sensor). To be able to connect to the virtual object, the following line
must be added to the connect.cfg file:

your_subject OVirtualRobotComm.Effector.OCommandVectorData.O

3.4.1 Description of the OCommandVectorData message

The OCommandVectorData message is a structure very similar to OSensorFrameVec-
torData (used to read sensor values). It also contains three members, which are a struc-
ture called vectorInfo, and two arrays called OCommandInfo and OCommandData.
Each cell of OCommandInfo has a corresponding cell in the OCommandData array.

vectorInfo
It is a structure of type ODataVectorInfo. It contains two elements called numData

and maxNumData. The two arrays OCommandInfo and OCommandData have an al-
located memory size equal to maxNumData, but their actual size is that indicated by
numData, it is, only numData actuators will be available in the OCommandData array.

OCommandInfo
This array is accessible by using the GetInfo (int index) function. Each cell in

the OCommandInfo array has three main elements: type that describes the type of
effector, primitiveID describing the effector primitive ID and numFrames, describing
the number of frames passed in the command (since commands can be grouped to be
sent for several frames).

OCommandData

28

It is a structure composed of an array of OCommandValue. OCommandValue is
the general type for commands for effectors. Subclasses exists for each effector, and
they must be checked at the Model Information documentation. To access the OCom-
mandData structure use the GetData (int index) function. Each cell of OCommandData
contains the commands for the next numFrames for a specific effector.

3.4.2 Sending a command to an effector

The list of steps to send a command to an effector :

1. Initialising the system

Initialisation is required in order to move Aibo’s joints or to send commands to
the LEDs. Depending on the effector we want to act, initialisation will require
more or less work. Initialisation of the joints can be performed in any OPEN-R
object. Only one initialisation is required, usually done at the initialisation step
of an object (DoInit procedure).

� Get primitive IDs

As happened with sensors, each effector has its own primitive ID. It is required
to obtain the primitive ID of an effector in order to identify its index inside the
OCommandInfo and OCommandata arrays. The steps to follow are the same
as for sensors. First, the primitive locator is found on Model Information doc-
umentation. Then the OPENR::OpenPrimitive() function is used to make the
conversion from locator to ID. This result usually is stored in an array for further
use. See the example in section 3.2.2

� Set joint gains (for joints)

The joint motor control in Aibo is implemented by using a PID. In order to
control those motors, their PID gains and shifts values must be set. The values
to set the joints are specified by Sony on its Model Information documentation.
Other PID values can be set but this is not recommended since they may damage
the joints. Note that the PID values are different for each joint motor.

The first step is to enable the joint gains. To do this, just call the OPENR::EnableJointGain()
function. Then you can set the gains by calling the OPENR::SetJointGain() func-
tion with the appropriate values.

Example:

void MTNAgent7::SetJointGain()
{

OSYSDEBUG(("MTNAgent7::SetJointGain()\n"));

OPrimitiveID tilt1ID = moNetAgentManager->PrimitiveID(HEAD_TILT1);

OPrimitiveID panID = moNetAgentManager->PrimitiveID(HEAD_PAN);

29

OPrimitiveID tilt2ID = moNetAgentManager->PrimitiveID(HEAD_TILT2);
OPENR::EnableJointGain(tilt1ID);

OPENR::SetJointGain(tilt1ID, TILT1_PGAIN, TILT1_IGAIN, TILT1_DGAIN, PSHIFT, ISHIFT, DSHIFT); OPENR::EnableJointGain(panID);

OPENR::SetJointGain(panID, PAN_PGAIN, PAN_IGAIN, PAN_DGAIN, PSHIFT, ISHIFT, DSHIFT);
OPENR::EnableJointGain(tilt2ID);

OPENR::SetJointGain(tilt2ID, TILT2_PGAIN, TILT2_IGAIN, TILT2_DGAIN, PSHIFT, ISHIFT, DSHIFT);
int base = RFLEG_J1;
for (int i = 0; i < 4; i++)
{

OPrimitiveID j1ID = moNetAgentManager->PrimitiveID(base + 3 * i);

OPrimitiveID j2ID = moNetAgentManager->PrimitiveID(base + 3 * i + 1);

OPrimitiveID j3ID = moNetAgentManager->PrimitiveID(base + 3 * i + 2);
OPENR::EnableJointGain(j1ID);

OPENR::SetJointGain(j1ID, J1_PGAIN, J1_IGAIN, J1_DGAIN, PSHIFT, ISHIFT, DSHIFT);
OPENR::EnableJointGain(j2ID);

OPENR::SetJointGain(j2ID, J2_PGAIN, J2_IGAIN, J2_DGAIN, PSHIFT, ISHIFT, DSHIFT);
OPENR::EnableJointGain(j3ID);

OPENR::SetJointGain(j3ID, J3_PGAIN, J3_IGAIN, J3_DGAIN, PSHIFT, ISHIFT, DSHIFT);
}

OPrimitiveID tailtiltID = moNetAgentManager->PrimitiveID(TAIL_TILT);

OPrimitiveID tailpanID = moNetAgentManager->PrimitiveID(TAIL_PAN);
OPENR::EnableJointGain(tailtiltID);

OPENR::SetJointGain(tailtiltID, TAIL_PGAIN, TAIL_IGAIN, TAIL_DGAIN, PSHIFT, ISHIFT, DSHIFT);
OPENR::EnableJointGain(tailpanID);

OPENR::SetJointGain(tailpanID, TAIL_PGAIN, TAIL_IGAIN, TAIL_DGAIN, PSHIFT, ISHIFT, DSHIFT);
}

� Calibrate the joints (for joints)

It happens sometimes that the position read by the sensors and the real position
of the joint differs in some small quantities. For this reason, before moving the
joints it is usually performed a calibration step. It consists of reading the actual

30

value of the joint and then setting the joint to the value sensed. Reading a joint
value can be performed with the OPENR::GetJointValue() function. Then, the
joint must be set to the read value by using a user defined function (not provided
by OPENR).

Example:

MoNetStatus NeutralAgent::AdjustDiffJointValue(OVRSyncKey syncKey)
{

OJointValue current[DRX900_NUM_JOINTS];

RCRegion* rgn = moNetAgentManager->FindFreeCommandRegion();

OCommandVectorData* cmdVecData = (OCommandVectorData*)rgn->Base();
cmdVecData->vectorInfo.syncKey = syncKey;

for (int i = 0; i < DRX900_NUM_JOINTS; i++)
{

OJointValue current;

OPENR::GetJointValue(moNetAgentManager->PrimitiveID(i), ¤t);

SetJointValue(rgn, i, degrees(current.value/1000000.0), degrees(current.value/1000000.0));
}

moNetAgentManager->Effector()->SetData(rgn);

moNetAgentManager->Effector()->NotifyObservers();
return monetCOMPLETION;

}

2. Select a free shared memory region

Commands for effectors are not directly send. Instead of that, a buffer method
is implemented in order to avoid two possible problems: first, messages maxi-
mum size may be smaller than the message being actually sent. Then, instead of
sending a command structure (of type OCommandVectorData), objects send a
pointer to a command structure situated in the shared memory4. Second, by us-
ing this method, a group of buffers can be set. Buffers would act as a place where
commands are stored for retrieval when the OVirtualRobotComm is ready. By
using those buffers it is possible to send commands to the OVirtualRobotComm
without paying attention if its is ready or not. commands are then just stored in
the buffers waiting for the virtual object. This method brings smoothness and

4The shared memory is a place of Aibo’s memory where all objects can write and read. Thus, it is used
to interchange information between objects

31

higher reactivity to the robot since every command is processed as quick as pos-
sible between gaps in the middle. Usually, two buffers are allocated. Buffers are
created by the programmer.

To access the shared memory region, OPEN-R provides the RCRegion class. To
send commands to joints OPEN-R provides a function (OPENR::NewCommandVectorData())
to allocate the memory and to hold a reference counter. This counter is used by
the system to avoid region overwriting. The OPEN-R command creates a OCom-
mandVectorData in shared memory and an ID for that memory. It needs three
arguments:

size_t numCommands, that contains the number of cells in the OCommandData
array, one for each actuator wanted to command

MemoryRegionID* memID, that will have the ID of the memory allocated

OCommandVectorData** baseAddr, that is the pointer to the memory region

Once called this function, then the RCRegion class must be instantiated. The
class constructor is RCRegion (MemoryRegionID memID, size_r offset, void*
baseAddr, size_t size) where memID is the memRegionID of the ODataVector-
Info, offset is the offset of ODataVectorInfo, baseAddr is the pointer returned by
OPENR::NewCommandVectorData() and size is the total size of ODataVector-
Info.

Example:

void BallTrackingHead7::NewCommandVectorData()
{

OStatus result;
MemoryRegionID cmdVecDataID;
OCommandVectorData* cmdVecData;
OCommandInfo* info;

for (int i = 0; i < NUM_COMMAND_VECTOR; i++)
{

result = OPENR::NewCommandVectorData(NUM_JOINTS, &cmdVecDataID, &cmdVecData);
if (result != oSUCCESS)
{

OSYSLOG1((osyslogERROR, "%s : %s %d", "BallTrackingHead7::NewCommandVectorData()", "OPENR::NewCommandVectorData() FAILED", result));
}

region[i] = new RCRegion(cmdVecData->vectorInfo.memRegionID, cmdVecData->vectorInfo.offset, (void*)cmdVecData, cmdVecData->vectorInfo.totalSize);
cmdVecData->SetNumData(NUM_JOINTS);
for (int j = 0; j < NUM_JOINTS; j++)
{

32

info = cmdVecData->GetInfo(j); info->Set(odataJOINT_COMMAND2, jointID[j], NUM_FRAMES);
}

}
}

3. Set the effector value

Once the memory has been allocated by creating the RCRegion, then joint values
can be sent. The process begins by checking that no other object is reading the
shared memory before writing to it. To do that, the RCRegion class has a func-
tion called NumberOfReference() that returns the number of objects pointing to
that memory (this control is established when calling the OPENR::NewCommandVectorData()
explained above). The function will return the number of objects pointing to that
memory including the present object (so a value of 1 is correct to start writing).

Once it is sure to write to the region, a sequence of frame commands must be
created. In order to create a linear movement from the current joint position to
the desired new one, a set of mid-steps must be created. This process brings
smoothness in the robot movement and prevents damages for too high velocity
movements. The way of creating this mid-steps must be decided by the program-
mer and implemented by it. There is no help function provided for it. This allows
the programmer to design his own type of movements (linear, exponential,etc.).
All the frames generated will then fill the frames in the OCommandData.

Example: In the BalltrackingHead7 example, the creation of the frame values is
performed by implementing the SetJointValue() function.

void BallTrackingHead7::SetJointValue(RCRegion* rgn, int idx, double start, double end)
{

OCommandVectorData* cmdVecData = (OCommandVectorData*)rgn->Base();

OCommandInfo* info = cmdVecData->GetInfo(idx);

info->Set(odataJOINT_COMMAND2, jointID[idx], NUM_FRAMES);

OCommandData* data = cmdVecData->GetData(idx);

OJointCommandValue2* jval = (OJointCommandValue2*)data->value;
double delta = end - start;
for (int i = 0; i < NUM_FRAMES; i++)
{

double dval = start + (delta * i) / (double)NUM_FRAMES; jval[i].value = oradians(dval);
}

}

33

