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cecilio.angulo@upc.edu, r tellez@ouroboros.org, diego.pardo@upc.edu

Abstract

Novel theories have recently been proposed to try to explain higher cognitive functions as

internal representations of action and perception of an embodied autonomous agent in a

situated environment. Using neural evolutionary robotics, a new concept of collaborative

control architecture allows construction of a behaviour-based system as a result of interac-

tions between the control system and both the external and internal environments. The full

separation achieved between the inner world of the autonomous agent and the real exter-

nal world gives some insight into how comprehensive understanding on robot sensing and

learning can be obtained. Two experiments, the first on generation of walking gaits for the

Aibo robot and the second on a two-sensor, two-motor simulated robot orbiting around an

object illustrate the performance of the proposed paradigm and lead to discussion of con-

cepts in the robot’s inner world, emerged from the interaction with the environment when

completing a task.
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1 Introduction

The study of cognitive systems for engineering purposes involves the creation of

artificial systems that reliably exhibit some desired level of cognitive performance

or behaviour [1]. In the age of computers as boxes, traditional approaches to mod-

elling cognitive systems were computational [2,3], based on (i) utilizing the stan-

dard tools and concepts of the theory of computation, and (ii) understanding human

cognition as to study the mind/brain in abstraction from its real-world environment.

Later, theories were proposed that tried to explain higher cognitive functions as in-

ternal simulations of action and perception [4] of an embodied autonomous agent

(a robot) in a situated environment (at home, for instance), leading to a different vi-

sion from the former contrasting frameworks [5]. Brooks’ engineering approach to

the construction of computerized agents extends the initial Fodor’s methodological

cognitivism by considering intelligence as situatedness [6], however the world of

computerized agents was still a world of computers with layered structure situated

in environments. Gibson’s ecological approach [7] offered a theory for cognition as

an ecological (natural) science in contrast to the precedent view of computational

science, a science of the artificial [8]. In this sense, dynamicist theories has been

recently proposed as alternative for handling cognition [9], considering cognitive

agents as dynamical systems that can be understood dynamically. Hence, much of

the current work in embodied cognitive science is in a sense returning to its cy-

bernetic roots [10], focusing on agent–environment interaction and bodily and sen-

sorimotor mechanisms [11,12]. Machine learning approaches including artificial

neural networks [13], behaviour-based systems [14], artificial life [15] and evolu-

tionary computing [16] fit this new paradigm based on dynamical coupling [17].

The architecture concept presented here can be classified within these latter theo-
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ries, using neural evolutionary robotics in a novel modular form for construction of

a behaviour-based system.

Modularization is accepted for all the approaches cited as the most naturally occur-

ring structure able to exhibit complex behaviours from a network of individually

simple components, which interact with each other in relatively simple ways. Col-

laborative elements are usually information-processing software units, such as neu-

rons, or dynamically simulated entities, such as bees with swarm intelligence, or

flocks of birds, schools of fish, etc., so that the coordinated behaviour of the group

emerges from the interaction of these simple agent behaviours. The approach pro-

posed is also based on simple collaborative information-processing components,

albeit as close as possible to the hardware devices (sensors and actuators), called

intelligent hardware units (IHUs), embodying a physical autonomous agent to de-

sign a new ambient architecture concept. Constructivist robot control architectures

are usually decomposed into a number of layers, each with access to sensors and

motors, and each responsible for generating different levels of behaviour, such

as ‘collision avoidance’ or ‘map-making’, the so-called subsumption architecture.

However, retaining some of the ideas of von Foerster’s work [18], reproduced by

Ziemke [10], by separating these functions from the totality of cognitive processes,

the original problem is abandoned and transformed to a search for mechanisms that

implement entirely different functions.

We demonstrate in this article that a modular architecture based on IHUs allows

the emergence of behaviours as a result of the interactions of a collaborative con-

trol system with both the external and internal environments, in that it implements

the von Foerster concept of double closure: an embodied agent can be autonomous

and organizationally closed, but at the same time structurally coupled to the en-

vironment it is situated in. Hence, the architecture obtained is not based on inter-
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nal models trying to exactly model the environment, but the internal model that

emerges constructs a reality based on interaction with the environment that is use-

ful for reaching the proposed goals. In this form, our approach is interesting from

three points of view: (i) Behaviour-based robotics: a novel modular concept based

on hardware elements for the behaviour of autonomous agents is defined; (ii) Con-

trol engineering: a fully collaborative control architecture based on IHUs with in-

ternal representation of perception is developed; and (iii) Ambient robotics: a pos-

sible approach to the human-robot interaction problem is postulated using internal

robotics.

In the next section, the modular concept is introduced for autonomous agent con-

trol, with IHUs proposed as possible modules for a modular implementation of au-

tonomous agents control system. Section 3 discusses the new paradigm and shows,

using a control engineering discourse, how this approach allows the generation of

a truly inner world with internal representations of perception. The full separation

achieved between the inner world of the autonomous agent and its external real

world provides some insight into how the human–robot interaction can be improved

from a robot cognitive point of view, dealing human as a part of the environment.

A simple experiment on a two-input, two-output simulated robot and experiments

for the generation of walking gaits on the Aibo robot, a complex task in a complex

environment, illustrate the performance of the proposed paradigm when complet-

ing a task. Finally, some conclusions and proposals for further research conclude

the article.
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2 Intelligent Architecture: A Tactical Modular Concept

For the control of an artificial autonomous physical agent, sensory information from

the environment must be obtained through sensors. This information must then

be processed and used to guide the actions of the agent so that it can perform

the task in question. When the number of sensors is large and the task at hand

is complex, usually implying interaction with objects and people, difficulties arise

on how to integrate all the sensory information in order to guide the action [5].

We propose modularization to solve this problem. In the design of modular neural

controllers, most works have been influenced by the mixture of experts of Jacobs

et al. [19]. Their basic idea was to design a system composed of several networks,

each of which handles a subset of the complete set of cases required to solve the

problem. Their system has been widely used and improved upon by several authors

in different classification problems [20,21]. In the case of evolutionary robotics,

Tani and Nolfi [22] improved the Jacobs architecture for robot control. Recently,

Paine and Tani [23] studied how a hierarchy of neural modules could be generated

automatically. Lara et al. [24] separately evolved two controllers that performed

different tasks, then the connections between the controllers were evolved in an

additional step to generate a single controller capable of performing both tasks.

Despite all these good results in modular robot control, none of the studies focused

on sensor fusion, and only robots with a small number of sensors and actuators were

used. Furthermore, all the studies cited divided the global task into a set of easier

sub-tasks, so that when combined, the robot performed the global task required.

Each module was implemented by a monolithic neural controller taking the sensor

values as inputs and the commands for the actuators as outputs. Even though all the

studies were successful, it has been not reported how this type of neural controller
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could control more complex robots with a greater number of sensors and actuators

[25].

We propose tactical modularity approach as a paradigm that should generate mod-

ularity at the level of the robot devices (sensors and actuators) that implement a

required sub-task. This means that, once a sub-task has been determined for the

robot, the tactical modularity concept is applied to implement the sub-task using

the sensors and actuators at hand. Modularity is implemented by designing a de-

centralized controller composed of small processing modules around each of the

robot devices, called IHUs. A schematic diagram of an IHU is shown in Fig. 1.

Every IHU comprises a sensor Si or an actuator Aj and an artificial neural net-

work (ANN) that processes the information arising from the associated device: it

receives sensor information, yi = ANNSi
(·) or it sends commands to the actuator,

uj = ANNAj
(·). All the IHUs are interconnected to each other to be aware of what

the other IHUs are doing,

yi = ANNSi

(

si,y(\i),u
)

uj = ANNAj
(y,u)

(1)

with si = Si (outi), y = {yk}
p

k=1, y(\i) = {yk}
p\i
k=1, u = {uk}

m

k=1, inj = Aj (uj).

Each particular neural processor translates information received from the sensor Si

(or from the network) to the network (or to the actuator Aj). A neural controller

for a simple robotic system with two sensors and two actuators is depicted in Fig.

2. Only nodes into the neural networks directly associated with physical devices

manage real world signals; all the other nodes deal with internal representations of

the world.

Putting computational power at each sensor is not a new idea [5]. The novel ap-
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Fig. 1. Schematic diagram of an Intelligent Hardware Unit.

Fig. 2. Application of four IHUs for control of a simple robot composed of two sensors and

two motors.

proach presented here is the simultaneous introduction of computational power into

each actuator that generates internal representations (u,y) of the external world

(in, out), and the design of a complete information-sharing network between all

devices. The approach involves building simple but complete systems, rather than

dealing with the complexity problem by dividing cognition in sub-domains. Us-

ing a neuro-evolutionary algorithm, neural nets learn how to collaborate with each

other and how to control associated elements, allowing the whole robot to per-

form the required sub-task. The co-evolutionary algorithm uses genetic procedures

to teach networks how to cooperate to achieve a common goal, i.e., the sub-task

to be implemented, with every network having its own and different vision of the

whole system. The Enforced Sub-Populations (ESP) algorithm [26,27] was selected

during experimentation to evolve the network because of its good performance in
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co-evolutionary processes.

3 Internal Representation of the Environment

In this section, the proposed IHU-based tactical modular architecture is justified

as a dynamical approach to ambient cognitive robotics using a control engineer-

ing perspective. Our aim is to demonstrate that the proposed network structure of

IHUs provides the autonomous agent with an ‘inner world’ based on internal rep-

resentations of perception through the completed task rather than an explicit repre-

sentational model, following the ideas of internal robotics of Parisi and the double

closure scheme of von Foerster. Hence, we are interested in building a simple but

complete system rather than in dealing with the complexity problem by dividing

cognition into sub-domains.

3.1 Control engineering perspective

Feedback is a simple control structure that considers the relationship between out-

puts and inputs in a plant (sensorimotor control) [28]. A typical single-input, single-

output (SISO) feedback control system is depicted in Fig. 3, for which the inner

world is defined as the part of the control system corresponding to controller-based

units, s = Sensor(out), y = Conditioner(s), u = Controller(SPInt, y), and

in = Actuator(u). Similarly, the outer world is defined as the part of the con-

trol system corresponding to process-based units, i.e., the physical world in which

the autonomous agent is situated, out = Process(in). From a basic control engi-

neering perspective, so that the whole system reaches the set point (SP), the control

elements (inner world) must be designed using a model as close as possible to the
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Fig. 3. A typical SISO feedback control system.

outer world, the so-called process model. Controller design procedures in control

engineering are traditionally model-based, so the performance of the whole sys-

tem depends on how well the process has been modelled: the internal model of the

outer world used to generate the inner world must be as close as possible to the

outer world. However, how closely human behaviour can be modelled?

A particular element that can help in understanding the concept is the role of the

SP. For effective comparison of blocks in Fig. 3, the external SP must be translated

to an internal SP based on the same units for the controller as for the inner world.

For example, a thermostat translates external SPs from temperature units to volt-

age units in a range similar to that for the conditioner. It is usually assumed that

this conditioning is known to the control engineer designing the control system, so

sensors and actuators are considered as part of the process, leading to clearer con-

trol design: a correspondence can be established between outer world (in, out) and

(s, u). However, when this knowledge is not available, sensors and actuators are not

predetermined, or they are affected by the environment in an unpredictable manner,

then the relationship between the conditioner, controller and translator is no longer

a simple additive process. Unlike in traditional approaches, a learning procedure

or teaching module must exist for designing or modifying the agent’s internal rep-

resentations and intentionality. The internal translation of the external SP, which

is selected in a certain sense, should affect both control elements (conditioner and
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controller) in an unknown, possibly non-linear manner.

These elements comprising the cognitive architecture of the autonomous agent are

responsible for adapting the relationship between the autonomous agent (embodi-

ment) and the environment (situation):

• The conditioner is a control element that adapts what the sensor captures from

the outer world to what the robot architecture perceives in its inner world, con-

sidering the internal SP (the task at hand).

• The translator is a control element that translates the external SP, which is in

fact a goal associated with a task, as an interpretation of the outer world. It is a

learning function for the whole inner world system.

• The controller is a control element that relates internal perception of the outer

world in the form of inner world units to accomplishment of the task at hand,

interpreted as an internal SP in inner world units. It drives the actuator to change

the body–environment situation (the robot-human relation). It needs continuous

but not exhaustive learning to continually adapt the body to the environment.

Broadly speaking, the behavioural architecture depends on the goal (goal-directed

training) interpreted by the translator, on the environment (outer world) interpreted

by the conditioner, and on the body (control, sensor and actuator) acting through

the controller. Information from the environment is mentally presented, instead of

mentally represented: there is no need, as in the traditional approach, to consider

any accurate correspondence between the internal model and the real world via a

process model. The internal model is built from interaction of the body with the

environment; however, in contrast to Parisi [4], it does not try to exactly imitate the

world, but is an interpretation of it [29]. The important point is that the agent’s view

of the outer world makes sense to the agent himself. Experience and information
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obtained from the interaction with the world are therefore highly subjective.

3.2 The internal model

Sensor processes (hardware–software perception, out 7→ s 7→ y) and motor pro-

cesses (software–hardware motion, y 7→ u 7→ in) are separated. However, feedback

from the outer world is not enough to achieve the von Foerster concept of double

closure:

“The meanings of the signals of the sensorium are determined by the motorium;

and the meanings of the signals of the motorium are determined by the senso-

rium.”

Therefore, perception and motion must be connected to each other in such a form

that information has its origin in this creative circle. Motor stimuli must also be sent

to the sensor elements to ‘predict’ what to sense upon real sensation in the outer

world: out 7→ (s, u) 7→ y. In terms of control engineering, an internal model con-

trol (IMC) structure [30] can be chosen to introduce the concept that an information

flow exists from the actuator control signals to the conditioner (Fig. 4). These sig-

nals model the environment, and hence a modeller is defined for both, modelling

the environment and conditioning the outer world to the inner world units (Fig.

5). The inner signals sent by the controller are fed back to the modeller, instead

of real world signals from the actuator, since this structure does not pretend to ex-

actly model the world, or to obtain a subjective internal representation of the outer

world. Extension of the proposed SISO control to a typical distributed multi-input,

multi-output (MIMO) system (Fig. 5) results in a control system exactly the same

as our proposed network of IHUs (Eq. 1), as shown with the two-input, two-output
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Fig. 4. Feedback control loop with internal model control.
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Fig. 5. Behavioural robot architecture designed on collaborative IHUs in the form of a

MIMO and decentralized control architecture.

IHU-based network in Fig. 2.

4 Experiments and Discussion

Two experiments have been designed to explain the contributions of the proposed

methodology: the first generates a walking gait for a quadruped as a complex task to

validate the proposed architecture; and the second is a two-wheeled simulated robot
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completing a simple task to illustrate and discuss the internal world generated for

the proposed paradigm.

4.1 Validating the collaborative intelligent architecture

To evaluate the proposed architecture as a valid control architecture completing

complex tasks, we selected generation of a walking gait for a quadruped in a highly

complex robot with several degrees of freedom (DOFs). A total of 31 sensors and

actuators are managed by the tactically modularized architecture. Two main ap-

proaches exist for designing walking robot controllers: (i) using a walking algo-

rithm manually designed by an engineer that indicates at any step the position of

every joint of the robot [31], so the resulting gait is perfectly engineered one; or (ii)

using dynamic coupled CPG (central pattern generator) equations for non-linear

oscillators built on neural networks. We implemented the latter approach [32].

Firstly, our architecture was directly applied to the robot to evolve controllers for

generation of a walking pattern. Following the CPG approach, the architecture

was implemented using continuous-time recurrent neural networks (CTRNN) [33]

and a fitness function was developed obligating the robot to acquire a determined

gait style, based on the Sony walking style. Unfortunately, none of the controllers

evolved for different fitness function variations for the walking task were able to

take steps; the high dimensionality of the search space being identified as a poten-

tial problem, sequential evolution was then considered. Architectures implement-

ing sequential evolution based on CPGs for evolving walking gaits [32] have never

been applied to a robot as complex as Aibo, with so many DOFs. Our sequential

planning first evolved isolated CPG oscillators, so the system generated a mean

value for the range of movement of each joint, with maximal variance. In a sec-
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ond stage, CPGs were replicated in all the legs. Required synchronization between

CPGs for implementation of a simple walking gait implies a phase relation of π

radians between pairs of joints of all types. The fitness function yielded continu-

ous oscillatory movement with this phase relation. During experiments, after 14

generations, 90% of the evolved networks were able to generate counter-phase os-

cillatory patterns. The final stage is coupling between layers of joints. From the

previous stage, three different oscillating layers were obtained with four joints of

the same type oscillating together in a walking phase relationship. Interconnection

of the three layers is then required to complete the architecture as a whole to obtain

coordination, allowing the robot to walk. Walking behaviour was obtained for more

than 85% of the populations 1 .

4.2 Discussion for a generated internal world

Generation of a walking gait resulted a valid experiment to evaluate the proposed

architecture as a valid control paradigm for solving complex tasks on general com-

plex robots. However, main contribution of the proposed method is not limited to

deal with increasing complexity, but the generation of internal world as long as the

task is being accomplished. In order to illustrate it, complexity has been reduced for

an easier discussion: the goal in this second experiment is to obtain an autonomous

robot able to find a square object in the middle of the simulated environment, start-

ing from a randomly selected point and then orbiting around the object in an end-

less loop at a close distance. This behaviour emerges from the cooperation of four

IHUs associated with two infrared sensors placed at the upper-left corner of the

1 Visit www.ouroboros.org/evo gaits.html for walking sequences for the simulated Aibo

and the real robot.
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Fig. 6. Signals from sensors, IHU sensor translation and IHUmotor actuation after learning

for the orbiting simulated robot experiment.

robot, one pointing to the front (Front IR) and another pointing to the left (Left IR),

and two motors driving two wheels placed at the bottom of a square platform. A

third free wheel at the front gives stability to the whole robot, but offers no control.

Sensors were modelled that can detect objects within a limited range, similarly to

real IR sensors, such that they are not detected when they are not close enough. The

physics of the robot movement was emulated using the Webots simulator [34]. This

emulation included a small bias on motor values due to imperfections, and noisy

effects were taken into account. Each IHU is implemented by a static feed-forward

ANN with a sigmoidal activation function.

Signals obtained from a complete experiment involving 200 steps taken by a trained

robot are depicted in Fig. 6. The top plot shows actual IR sensor readings, the

middle plot shows IHU sensor translation for the signals, and the bottom plot shows
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the IHU actuator control commands sent to the motors. It is evident that the IHU

sensors have learnt to translate sensor readings in a nearly exact scaled form, except

for the instant at which the robot finds the object. In such a situation, both IR

signals are magnified, but they are proportionally inverted; so the internal model is a

distortionated version of the reality, but it manages for accomplishing the task. The

experiment starts with null signals being sent from the IR sensors to the associated

IHUs because no object is detected. These signals are translated to noisy signals

for the IHU sensors because signals received from the IHU actuators are noisy.

However, the robot has learnt to send a higher driving control to the right motor

than to the left one, obligating the robot to turn around. At a certain moment, the

robot finds the object and turns until it can orbit around the object. Owing to the

sharpness of the central object to be detected and orbited, and the use of static feed-

forward networks, the robot loses contact with the object when orbiting. During

this time, the robot has learnt that, as previously, it is better to always turn to the

left by increasing power on the right motor and decreasing it on the left motor, in

order to reach the goal.

5 Conclusions

A new paradigm is presented based on modularity that explains higher cognitive

functions as internal representations of action and perception of an embodied au-

tonomous agent in a situated environment. In tactical modularity, subdivision into

modules is performed at the level of the physical elements of the autonomous agent

(sensors and actuators) involved in accomplishment of a task, the so-called intelli-

gent hardware units (IHUs). The IHU-based tactical modular architecture proposed

has been justified as a dynamical approach to cognitive robotics using a control en-
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gineering perspective. It has been demonstrated that a network structure of IHUs

provides an autonomous agent with an ‘inner world’ based on internal simulations

of perception rather than an explicit representational model. Thus, the full separa-

tion achieved between the inner world of the autonomous agent and its external real

world gives an insight into how the human-robot relation can be resolved. The ar-

chitecture proposed was validated for generation of the walking gait of a quadruped

in a highly complex robot with several DOFs. A total of 31 sensors and actuators

are efficiently managed by the tactically modularized architecture to accomplish

the task.

The tactical modular architecture is focused on the emergence of behaviour and not

on deliberative interpretation of the process; however, it can facilitate the integra-

tion of both reactive and deliberative controls. Further studies should be developed

to analyse in detail the functionality of the translator module and its ability to inte-

grate both types of control.
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