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Abstract—We introduce a distributed neural network based
architecture for the control of autonomous robots. This archi-
tecture is able to create a meaningful internal representation
of the robot current situation directly grounded on its sensori-
motor system. The representation is easily accessible from the
outside and could be used for further deliberative purposes.
An application example is provided for the garbage collector
problem, where a robot must learn how to differentiate between
garbage and walls, and attach those meanings to different
sensor values.

I. INTRODUCTION

In this paper, we address the problem of attaching meaning
to a robot sensor state. The attachment of meaning to robot
situations has been mainly done on a manual basis by the
designers. In those cases, like for example in experts systems
or in voice commands based robots like Aibo, the system op-
erates over the syntax, and the semantic meaning is provided
by a human who interprets the system answer, or includes
it within the system itself [1]. This approach to semantic
handling has been called conventional functionalism[2], and
is characterized by a complete disentanglement between
syntax and semantics. We are more interested, though, on
the acquisition and maintenance of meanings by the artificial
system itself. Systems equiped with this skill for automatic
meaning acquisition are called natural semantic systems [3].
A natural semantic system creates and maintains its own
meanings from its interactions with the environment.
Natural semantic systems are rare. However, there exists

already some examples. For instance, Pierce and Kuipers [4]
addressed the problem about a robot learning a model of
itself and its environment without initial knowledge of the
meanings of the sensors and actuators signals, and how all
this knowledge could be used for prediction and navigation.
A similar goal was achieved by Philipona et al. [5][6] where
a robot was capable of inferring the external space to itself
by studying the relations between motor commands and
changes in the perception, otherwise called sensorimotor
dependencies, by using a set of a priori unknown sensors and
actuators. Another example of natural semantic system can
be found in [7][8] where sensorimotor couplings were used
to acquire the meanings of the robot sensors through sensory-
invariance driven action. Finally, in [3], a robot learned to
use its a priori unknown effector procedures to achieve its
own internal goals.
All those works have in common that meanings are

created through a sensorimotor coordination. The use of
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sensorimotor coordination for meaning acquisition is a real
shift from the information processing approach used in most
semantics free systems. This change from one approach to
the other was proposed by Pfeifer and Scheier in [9][10] and
by Nolfi in [11]. In their work, Pfeifer and Scheier view the
problem of acquiring meaning as a problem of categorization.
Categorization allows an agent immersed in the real world
to make distinctions between different types of objects from
the sensed values. When using an information processing
approach, categorization is only seen as a mapping of sensory
stimulation onto a library of stored internal representations.
The sensorimotor approach instead, proposes the use of both
sensor and effector in a coordinated way to perform the
categorization. This approach states that both sensor and
motor play an important part in the act of categorizing and
by hence, in the acquisition of meaning.
In this paper we present a distributed architecture which

allows a robot to automatically acquire the meaning of its
sensory inputs, creating an internal representation of it. This
representation is like an internal meaningful categorization
of the robot situation, created through sensorimotor coordi-
nation. Furthermore, this categorization is directly accessible
as the output of some modules, hence, it is suitable for its
use by other modules. The rest of the paper continues with a
description of the architecture employed (in section 2), and
follows with an application of the architecture to the garbage
collector problem (section 3). The results obtained from the
resolution of the garbage problem are used to analyze the
inner workings of the architecture and see how meanings are
created (section 4). Section 5 discusses the results obtained,
and section 6 concludes and points to future work.

II. ARCHITECTURE DESCRIPTION

We have created a distributed architecture for the con-
trol of autonomous robots, based on neural networks. It is
called Distributed Architecture with Internal Representation
(DAIR), and a description of its more relevant issues for this
paper are included below. The main goal of this architecture
is to allow the generation of complex behaviors in complex
robots within the evolutionary robotics framework. Because
of that, a complete modular distributed architecture was
developed. The use of such degree of modularity allows the
staged evolution of controllers for robots with several sensors
and actuator in a process that we call progressive design.
A complete description and comparison of the architecture
against other evolutionary robotics architectures can be found
in [12]. The description of the staged evolution process for
progressive design is described in [13]. The application of the



Fig. 1. IHU schematics (above), and connection schematics of the
processing element to the associated device (sensor or actuator) (below).

architecture to a complex Aibo robot using staged evolution
can be found in [14], [12].
The DAIR architecture is a distributed modular approach

to autonomous robot control. Modularity is implemented by
creating a small processing module around each of the robot
sensors and actuators. Each module is created by what is
called an Intelligent Hardware Unit (IHU) whose schematics
is shown in figure 1.
Every IHU is composed of a sensor or an actuator and

a processing element which processes the information of its
associated device, that is, received sensor information for
sensors, and commands sent to the actuator for actuators.
It is said that the processing element is in charge of its
sensor/actuator. This type of connectivity means that the
processing element is the one that decides which commands
must be sent to the actuator, or how a value received from
a sensor must be interpreted. All IHUs are connected to
each other, allowing to each IHU know what the other
IHUs are doing. This implies that the processing element
is also in charge of deciding what to communicate to the
other elements as well as to interpret what the others are
communicating.
Hence, the architecture allocates one module for each

device. Eventhough each module is independent and perform
its own program associated to its device, modules will still
have strong couplings between each other. This type of
modularity implies that the optimal solution for the control
of one device by its IHU will in fact depend on the optimal
solutions found by the other IHUs. This type of modularity
where great couplings between modules exist has been called
decomposable modular system [15], [16].

Fig. 2. Application of the DAIR architecture for the control of a simple
robot composed of two sensors and two motors. Four IHUs are required.

As a processing element, a neural network was selected.
Neural networks are easily evolvable using evolutionary
robotics procedures, and present several advantages like
inmunity to noise, allow the progresive evolution of its
weights, and present a graceful degradation. The type of
neural network used will depend of the task to be solved. For
instance, in [14] a simple FeedForward neural network with
hidden units was used on a standing up behavior. In [12]
a Continual Time Recurrent Neural Network was used for
the generation of a walking behavior. In this paper a simple
FeedForward net with no hidden units was used (see figure
4-bottom). The structure of a IHU can be seen in figure 1,
and figure 2 shows how a complete neural controller would
be constructed for a simple robotic system composed of two
sensors and two actuators. It should be stated that when put
several IHU together on a control task, each element has its
own particular vision of the situation because each one is in
charge of its own sensor or actuator. This means that there is
no central coordinator. Each unit knows what the others are
doing but needs to select an action for its actuator or sensor
output, based on its knowledge of the global situation and
the current state of its particular device.
Hence, a distributed coordination between all the elements

is required which allows the whole robot perform the be-
havior required without the use of a central coordinator.
In our case, this is accomplished through an evolutionary
process using a neuro-evolutionary algorithm. Due to the fact
that the evolutionary process has to evolve different ANNs
for different roles on a common task, a co-evolutionary
algorithm is required, that is, the simultaneous evolution of
several nets with a common fitness. By using such kind of
algorithm it is possible to teach to the networks how they
must cooperate to achieve a common goal (i.e. the global
robot behavior to implement), when every network has its
own an different vision of the whole system.
The algorithm selected to evolve the nets is the ESP



Fig. 3. Simulation of the garbage collector problem on Webots simulator

(Enforced Sub-Populations) [17][18], which has been proved
to produce good results on distributed controllers [19]. A
chromosome is generated for each IHU network, coding in
a direct way the weights of the network connections, and
the whole group of neural nets is evolved at the same time
with direct interaction with the environment. The fitness
function which guides the evolutionary process is created
by the designer, depending on the problem that the robot
has to solve.

III. APPLICATION TO THE GARBAGE COLLECTOR
PROBLEM

In order to test the theoretical approach presented in
the previous section and see how meanings are created, a
Khepera robot simulation was used as test bed. Experiments
consisted of the implementation of the DAIR architecture
for the control of a Khepera robot while performing a
cleaning task. The selected test bed task is called the garbage
collector, and follows the description given in [11]. In this
task, a khepera robot is placed inside an arena surrounded
by walls where it should look for any of the sticks randomly
distributed on the space, grasp it, and take it out of the
arena (figure 3). The garbage collector behavior requires that
the robot completely changes its behavior based on a single
sensor value change. When the robot does not carries a stick
on the gripper, then its behavior has to avoid walls, look for
sticks, approach them, and pick them up. When the robot
carries a stick, its behavior has to change to the opposite,
avoiding other sticks and approaching walls in order to
release the stick out of the arena. This kind of test will
allow us to see if the robot creates different classifications
for the same object depending on the status of the gripper,
or otherwise, the robot has only a single representation for
the same object independently of its gripper state, since the
object perceived would be the same in both cases.

A. Experiment setup
All the experiments reported for the Khepera robot were

done on a simulator. As simulator, we selected the commer-
cially available Webots simulator by Cyberbotics [20]. This
simulator includes, among other things, the simulation of
the Khepera gripper, which is the turret capable of grasping
objects (see figure 3). The Khepera gripper is composed of

an arm that can be moved through any angle from vertical to
horizontal, and two gripper fingers that can assume an open
or closed position. The gripper is also composed of a sensor
that indicates the presence of an object between the fingers.
The robot has eight infrared sensors, six on the front and

two on the back. For the resolution of the garbage collector
problem only the six front sensors were used, as well as the
gripper sensor. As actuators, the robot has two motors (left
and right), but it is also possible to control the position of
the gripper arm and the status of the gripper fingers (open or
close). The control of the gripper is done by means of two
procedures: the first procedure, when activated, moves the
arm down, closes the gripper fingers and moves the arm up
again, picking a stick up; the second procedure moves the
arm down, opens the gripper fingers, and moves the arm up
again, releasing the stick.
The same setup as in Nolfi’s work was implemented for

the garbage collector task. It is composed of a rectangular
arena of 60x35 cm, surrounded by walls, and containing five
garbage cylindric sticks. Each stick has a diameter of 2.3
cm and was positioned randomly inside the arena at every
new epoch. In the same way, the robot was also randomly
positioned on the arena at the beginning of each epoch.
Experiments consisted of 15 epochs of 200 time steps

each, where an evolved controller was tested over the task.
The duration of each time step was of 100 ms. Each epoch
ended after the 200 steps or after a stick had been correctly
released out of the arena.
The DAIR architecture implementation creates one IHU

element for each device involved. There were eleven devices
involved, thus eleven IHUs were created: an IHU for each
of the infra-red sensors and the gripper sensor was created
(seven in total), two IHUs for the left and right motors, and
other two for the two gripper procedures. Each IHU was
implemented by a feedforward neural net with eleven inputs,
no hidden units, and one output.
The architecture was evolved using the evolutionary setup

described above. A fitness function was created for the
evolutionary process which rewarded controllers capable of
releasing one stick out of the arena. Controllers that were
able to only pick up one stick were also rewarded with a
lower fitness.

fitness =
0.1 if pick up stick
1 if stick released outside arena
0 if stick released inside arena

Like in the original experiments made by Nolfi, a special
mechanism was implemented which artificially added a stick
in front of the robot each time it picked one stick up.
The reason was to increase the situations where the robot
encountered an obstacle in front of it while carrying a stick.
One epoch lasted either 200 steps or until a stick was released
outside the arena. Each controller was tested for 15 epoch
per generation, obtaining the final fitness of the controller as
the average fitness of all the 15 epochs. Each evolutionary
process lasted for 1000 generations. Due to the stochacity of
the method employed, the whole evolutionary process was



Fig. 4. Modular representation of the architecture implemented for the
Khepera robot (top), and the neural network used for each IHU module
(bottom)

performed ten times.

B. Results

After 1000 generations, 9 out of the 10 evolutionary runs
evolved a maximal fitness behavior (15 sticks released out
of 15 epochs), generating a distributed controller able to
perform the garbage collector behavior 1. Results presented
in figure 5 show the evolution of the averaged fitness for
those ten runs.
When the controllers obtained are observed on the simu-

lator, we cannot appreciate significant differences in their
behavior. All of them perform correctly the behavior of
looking for sticks while avoiding walls, pick a stick up,
and then release it outside the arena while avoiding other
sticks. However, it happens in some special cases that the
robot categorizes a stick as a wall, while not carrying a stick.
This has not been considered as an error, since this type of
wrong classification does not lead to any error in the global
behavior. This situation was also observed in Nolfi’s original
experiments, and could have been avoided in both cases by
complexifying the fitness function or by providing to the
robot with such strange situations during the evolutionary
process as was done with the stick which was put in front
of the robot once it picked a stick up.

1video of the behavior obtained available at
www.ouroboros.org/garbage_collector.html
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Fig. 5. Mean number of sticks (out of 15) correctly released outside the
arena through generations. The curve represents the average in 10 different
evolutionary processes.

IV. ACQUISITION OF MEANINGS

An analysis of the inner workings of architecture shows
that the architecture makes use of the sensorimotor metaphor
for the apprehension of meaning and its assignment to
sensory states. This section will show the meanings generated
by the architecture and how can they be accessed from the
outside.
When analyzing the outputs of the evolved sensor IHU

modules, we observe that they produce similar output pat-
terns to similar situations. The sensor IHUs provided the
same output values to different sensor values which corre-
sponded to the same conceptual situation. This implies that
the sensor IHUs were classifying all a bunch of different
sensor states into the same conceptual category or meaning.
The different categories or meanings can be accessed by
using what we call the state vector of the robot at a given
time step. The state vector is formed by the concatenation
of the output values of the sensors IHUs at each time step,
that is:

state vector =
(IHUS1, IHUS2, IHUS3, IHUS4, IHUS5, IHUS6, IHUS7)

This state vector identifies the situation of the robot at that
time step. Basically, it can be seen as a categorization of its
current situation, or as an internal modeling of the outside
world that the robot is experiencing at this particular moment.
This internal representation at the IHU level contains the
meaning of the situation, and that meaning is attached to the
present sensor activity pattern. Changes in the values of the
sensors did not change the state vector, unless a change in
the situation of the robot, relevant for the task to solve, was
produced. Changes from one state to another one are not
instantaneous and involve a transient time where the IHUs
exchange information and finally adopt the new state.
The internal representations that map the sensory stimula-

tion to the category actually been experienced are automat-
ically created by the evolutionary process while interacting



with the environment. Therefore, the meanings are grounded
into the robot experiences. This means that the actual states
identified by the robot have a meaning for the robot. How-
ever, this meaning does not have to correspond to a human
meaning, but a meaningful state for the robot for the task to
be solved.
As will be seen below, for the garbage collector problem,

the robot identifies only a few possible states as required for
the solution of the task at hands, allowing it to reduce the
huge number of possible sensor inputs and robot states to
that few number of relevant ones. This means that a group
of sensors values will always correspond to a unique single
meaning or category. This represents a huge reduction from
the high number of possible situations that raw sensed data
provide. The internal states created by the system identify
those states that have a real semantic value, and that value
is grounded to the experiences of the robot.
For the garbage collector problem, there have been iden-

tified eight different internal states, each one corresponding
to a meaningful situation for the robot. In order to identify
the states that the robot evolved, some experiments where
performed. Those experiments consisted of allocating the
robot on a special situation, and then measure the values
given by the sensor IHU modules until the situation changed
(by means of the robot action). Special situations included
putting the robot on free space, and putting the robot in
front of a stick or a wall with different collision angles
and distances. All situations were tested with and without
carrying a stick.
By observing the graphics produced by the IHUs on each

of the special situation experiments, we obtained the IHU
output values presented in table 1. This table represents the
state vectors obtained with one of the 9 controllers evolved.
Values presented here were not clear and neat values, but
small variations of the order of 0.05 were observed in the
same state in different situations. Furthermore, the table rep-
resents the values obtained for only one of the 9 distributed
controllers obtained. The same concept states were obtained
for the other controllers, but their vectorial values were not
the same, since the evolutionary process is of stochastic
nature, which leads to the evolution of different vector values
for the same conceptual states.
It follows a description of the identified states:
State a: This state is obtained when the robot does not

carry a stick and does not detect anything. The robot is put
in the middle of the arena and no obstacles are put besides
it. After an initial transient time, the robot starts moving
forward, assuming a stable state where the values of the
IHUs outputs do not change at all, making the robot advance
forward. This behavior ensures that the robot will eventually
detect something, either the wall or a stick.
State b: This state is obtained when the robot carries a stick

and does not detect anything. This situation is the same as
in the previous state, but now the robot has a stick on its
gripper. Basically, the state of the robot is the same as in
the previous one, except that the IHU of the gripper sensor
indicates that there is a stick on it.

State c: State obtained when the robot detects something
but it does not know what it is (a wall or a stick). This state
happens when the robot detects something with sensor E but
it is not capable of classify what it is. This state, motivates
a special response pattern in the motor IHUs that makes
the robot turn over itself in order to allow sensors C and
D detect the object, and help it to disambiguate the sensing
information. Value v1 changes depending on the distance to
the object.
State d: State observed when the robot does not carry a

stick and it is in front of a wall. In this case, the robot realizes
that there is a wall in front of it, so it starts a movement in
order to avoid it.
State e: This state occurs when the robot does not carry

a stick and it is in front of a stick. Now, the robot detects
the stick and recognizes it as that. Therefore, it activates the
pick-up procedure in order to pick the stick up. Value v2
changes depending on the distance to the object.
State f: State observed when the robot carries a stick and

detects another stick. In this situation, the robot changes its
behavior to avoid the detected stick. Strangely, this state is
different from the state where the robot did not carry a stick
and detected a wall. Value v3 changes depending on the
distance to the object.
State g: This state is observed when the robot carries a

stick and detects a wall. In this case, the robot categorizes
the obstacle as a wall and then activates the releasing stick
procedure.
Those observed states indicate that the DAIR architecture

uses indeed the sensorimotor coordination metaphor in order
to produce its categorization. The most clear example is the
result obtained in state c, where the robot detects something
but it can not identify what it is. This situation indicates that
the robot is having perceptual aliasing. Its strategy is to move
itself into a more convenient position which provides it with
a more convenient sensor input that allows it to determine
what it is in front of. This type of behavior is just what has
been called as active perception [21] or as we have being
calling it during this paper, sensorimotor coordination.

V. DISCUSSION
We have shown how a distributed architecture can create

and use meaningful representations for the resolution of the
garbage collector task. However, it can be argumented that
this representation was also generated on the original experi-
ments by Nolfi, because he was able too to solve the garbage
problem. The advantage of the DAIR architecture is that the
categorization created is directly accessible to an observer
external to the networks, that is, the meanings not internally
coded in the network weights. This means that it is possible
to direct access the present situation of the robot from a
conceptual point of view by just looking the IHU sensor
outputs. This type of direct access to the generated meanings
may not be necessary in biological intelligent systems, but
scientists feel more confortable when such differentiation
is possible because allows an easier understanding of the
whole process. Furthermore, it may help in the maintenance



Sensors IHU A IHU B IHU C IHU D IHU E IHU F IHU Gripper
State a 0.06 0 1 1 0.97 0 0.1
State b 0 0 1 1 0.99 0 1
State c 0.06 0 1 1 v1 0 0.1
State d 0.06 0 0 0 0 0 0.01
State e 0.6 0 v2 0 0.19 0 0.01
State f 0.6 0.96 v3 0 0 0 1
State g 0.01 1 0.05 0.17 0 0 0.97

TABLE I
TABLE CONTAINING THE OUTPUT VALUES OF EACH IHU SENSOR FOR THE INTERNAL STATES CREATED. LETTERS A TO F INDICATE EACH OF THE IR

SENSORS FROM LEFT TO RIGHT.

of a correspondence between syntax and semantics. This
could be achieved, by accessing to the meanings created by
a more deliberative superior layer, which would use them
to (syntactically) reason about its situation, propagating in
this way the robot acquired meanings to more syntactic
processes.
From another point of view, we can see the actuation of

the architecture as an extractor of meaningful events which
are relevant for the resolution of the task. We have seen
that the architecture is capable of converting a continuous
flow of sensor data into a discrete number of meaningful
situations. We will call this situations events. A new event is
generated each time that the situation for the robot changes.
And the situation changes when the robot itself thinks that the
new sensory flow corresponds to something really different
from previous situation. In fact it creates a categorization of
experiences useful for the task at hands. This behavior is
similar to the ARAVQ event extractor algorithm [22], with
the difference that the ARAVQ extracts the events from the
information gathered by a robot that already knows how to
solve the task. Instead, the introduced architecture learns to
extract the events while learning the resolution of the task.

VI. CONCLUSION
We have presented a distributed architecture able to control

a robot through sensorimotor coordination. The architecture
creates its meanings from interaction with the environment,
and uses those meanings to classify and solve a garbage
collector task. Future work will continue with this bottom-up
approach, exploring how to use the state vector generated by
the sensor modules to integrate deliberative processes which
decide depending of the current situation of the robot, as it
is perceived by the robot itself.
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