
Book Title
Book Editors
IOS Press, 2003

1

Tactical modularity for evolutionary
animats

Ricardo A. Téllez and Cecilio Angulo

rtellez@lsi.upc.edu, cecilio.angulo@upc.edu

Technical University of Catalonia, Jordi Girona, 1-3, Barcelona

AbstractIn this paper, we use a massive modular architecture for the generation of
complex behaviours in complex robots within the evolutionary robotics framework.
We define two different ways of introducing modularity in neural controllers using
evolutionary techniques, which we call strategic and tactical modularity, and show
at what modular levels each one acts and how can they be combined for the genera-
tion of a completely modular controller for a neural networks based animat. Imple-
mentation results are presented for the garbage collector problem using a khepera
robot and compared with previous results from other researchers.

Keywords. autonomous robot control, neural networks, modularity, evolutionary
robotics

1. Introduction

In the framework of evolutionary robotics, the generation of complex behaviours in com-
plex robots is still an open question far from being completely solved. Eventhough lately
some complex behaviours have been implemented in simple wheeled robots [13], it is not
clear how those implementations will scale up in more complex robots, understanding by
complex robots, robots with a large number of sensors and actuators that must coordinate
in order to accomplish a task or generate a behaviour. In our research we focus on this
problem by using evolutionary techniques for the generation of complex behaviours in
complex robots.

We think that the solution to this problem must be grounded in the divide and con-
quer principle, this means, the use and generation of modular controllers. This is not in-
deed a new approach and has been adopted by other researchers [5][10][4][2]. However,
in all those modular implementations, modules were created at the level of behaviours,
it is, a module was created for each behaviour required by the robot.

In this paper, we introduce the idea of modularisation at the level of robot device and
promote its use together with the modularisation at the level of behaviours. We propose
that the use of both types of modularisation in a unique controller may be required in
order to achieve complex behaviours in complex robots. By doing this, a modularisation
at the two levels may allow the generation of really complex behaviours.

This paper is divided into the following sections: section 2 makes a review of related
works, section 3 describes the two different types of modularisation approaches; section



2

4 describes the experimental framework used; section 5 describes the experiments per-
formed and their results; section 6 discusses the results obtained; and final section 7 goes
to the conclusions and points towards future work.

2. Modularity in robot control

In the design of modular neural controllers, most of the jobs have been influenced by
Jacobs et al. mixture of experts [8]. Their basic idea was to create a system composed
of several networks, each one in charge of handling a subset of the complete set of cases
required to solve the problem. Their system has been widely used and improved upon
by several authors [3][1] in different classification problems. In evolutionary robotics,
Tani and Nolfi [16] improved Jacobs’ architecture by drawing on a mixture of experts
whose segmentation of competences was produced by observing the changes in the dy-
namical structure of the sensory-motor flow. In a more recent work, Paine and Tani [14]
studied how a hierarchy of neural modules could be generated automatically, and Lara et
al. [9] separately evolved two controllers that performed two different behaviours, then
evolved the connections between them in order to generate a single controller capable of
performing both behaviours.

On a similar way, Nolfi [12] makes one of the first attempts to use modular neural
controllers for the control of an autonomous robot in a quite complex problem. He com-
pares the performances of different types of control architectures, including two modular
ones: on the first one, the controller is composed of two modules each one in charge of
one specific and well differentiated task. The division in those two modules is performed
by using a distal description of the behaviours, it is, a division in behaviours described
from the point of view of an external observer. In the second modular architecture, Nolfi
proposes a control architecture where modules are created based on a proximal descrip-
tion of behaviours, it is, the description of the behaviour from the sensory-motor system
point of view of the agent. The work of Nolfi was later improved in [15] by showing how
a distal modularity could arise from an evolutionary process, and extended by Ziemke et
al. [20] by using other types of neural control architectures.

Except Nolfi’s proximal division, all the works shown have in mind the implemen-
tation of behaviours as composed of sub-behaviours. Hence, the idea in all of them is al-
most the same: to divide the global behaviour into a set of simpler sub-behaviours, which
when combined, make the robot perform the required global behaviour. This division is
sometimes made by hand or by any automatic way. Then, each sub-behaviour is imple-
mented by a single monolithic neural controller that takes as inputs the sensor values,
and as outputs the commands for the actuators. Even that all those works where suc-
cessful with those monolithic implementations, their results were only applied to simple
wheeled robots, being difficult to see how this type of neural controllers could control
more complex robots with several sensors and actuators.

Because all those modularisation strategies focus on behaviour division, we say that
they implement modularity at the strategic level.



3

3. Strategic and tactical modularity

From game theory [11], we think of strategy as the overall group of behaviours (or sub-
goals) that a robot requires for the accomplishment of a goal, and of tactics as the actual
means used to gain each of those sub-goals. Then, we define strategic modularity as
the modular approach that identifies which sub-behaviours are required for an animat in
order to obtain the global behaviour. This modularity can be performed from a distal or
a proximal point of view, but it is a division that identifies a list of sub-behaviours. In
contrast, we define tactical modularity as the one that creates the sub-modules required
to implement a given sub-behaviour. Tactical modularity has to be implemented for each
of the sub-behaviours by using the actual devices that will make the animat act, these
are, its sensors and actuators. In tactical modularity, subdivision is performed at the level
of the elements that actually are involved in the accomplishment of the sub-task.

To our extent, all of the works based on divide and conquer principles, focus their
division at the strategic modularity level, it is, on how to divide the global behaviour into
its sub-behaviours (or how to divide the task at hands into the required sub-tasks). Then,
they implement each of those sub-behaviours by means of a monolithic neural controller.
However, in this paper we propose the additional use of tactical modularity, where an
additional decomposition is made at the level of the devices of the animat.

In some cases, it is possible to implement the whole behaviour required for the an-
imat by only using tactical modularity, the use of one type of modularity does not im-
ply the use of the other. In fact, we propose the use of both modularity types on a same
controller as the required solution for complex behaviours in complex robots. Strategic
modularity would decide which sub-behaviours are required for the complex global task,
and tactical modularity would implement each of them on the complex robot.

We will not discuss here how to implement strategic modularity for a given robot
and task, since it is not our goal. In principle, any of the modularisation methods used on
the works described above is valid for its integration with our method of implementing
tactical modularity.

3.1. Implementing tactical modularity

Tactical modularity should create modularity at the level of the robot devices which have
to implement a required behaviour. It means that, once a sub-behaviour required for
the animat has been decided, tactical modularity has to implement it using the sensors
and actuators at hands. In this paper, we implement tactical modularity by creating a
completely distributed controller composed of small processing modules around each of
the robot sensor and actuator. We call this module an intelligent hardware unit (IHU) and
its schematics is shown in figure 1a.

Every IHU is composed of a sensor or an actuator and an artificial neural network
(ANN) that processes the information of its associated device (received sensor informa-
tion for sensors, commands sent to the actuator for actuators). This means that the neural
net is the one that decides which commands must be sent to the actuator, or how a value
received from a sensor must be interpreted. All IHUs are interconnected to each other in
order to be aware of what the other IHUs are doing. So, the net is also in charge of decid-
ing what to say to the other elements as well as to interpret what the others are saying.
The structure of a IHU can be seen in figure 1a, and figure 1b shows its application to a
simple robotic system with two sensors and two actuators.



4

Figure 1. (a) IHU schematics (left) and (b) application of four IHUs to the control of a simple robot composed
of two sensors and two motors (right)

Through the use of a neuro-evolutionary algorithm, IHU modules learn how to co-
operate and coordinate between them, and how to control its associated element, allow-
ing the whole robot to perform the sub-behaviour required. The algorithm selected is
the ESP (Enforced Sub-Populations) [6][7], which has been proved to produce good re-
sults on distributed controllers [19].By using such algorithm it is possible to teach to the
networks how they must cooperate to achieve a common goal (i.e. the sub-behaviour to
implement), when every network has its own an different vision of the whole system.

A chromosome is generated for each IHUs’ network coding in a direct way the
weights of the network connections, and the whole group of neural nets is evolved at the
same time with direct interaction with the environment.

4. Experimental framework

In order to test the theoretical approach presented in the previous section, we use a Khep-
era robot simulation as test-bed for our experiments. Experiments consists of the imple-
mentation of a tactical modular control system for the Khepera robot while performing a
cleaning task, and the comparison of performance with other controllers developed pre-
viously by other researchers. The selected test-bed task is called the garbage collector
as in [12]. In this task, a khepera robot is placed inside an arena surrounded by walls,
where the robot should look for any of the cylinders randomly distributed on the space,
grasp it, and take it out of the arena. Eventhough the robot used is not very complex, the
task selected for it is complex. The garbage collector behaviour requires that the robot
completely changes its behaviour based on a single sensor value change. When the robot
does not have a stick on the gripper, its behaviour has to avoid walls, look for sticks, and
approach them in order to pick them up. When the robot carries a stick, its behaviour has
to change to the opposite, avoiding other sticks and approaching walls in order to release
the stick out of the arena.



5

Figure 2. The first three architectures implemented: (a) a standard feedforward architecture, (b) a modular
architecture with two sub-modules, and (c) an emergent modular architecture

4.1. The khepera robot and its environment

All the experiments reported for the khepera robot are done on a simulator. As simulator,
we selected the freely available simulator YAST for the Khepera robot. It includes the
simulation of the Khepera gripper, which is the turret capable of grasping objects. The
Khepera gripper is composed of an arm that can be moved through any angle from verti-
cal to horizontal, and two gripper fingers that can assume an open or closed position. The
gripper is also composed of a sensor that indicates the presence of an object between the
fingers.

Only the six front infrared sensors of the robot were used, as well as the gripper
sensor. As actuators, the robot has two motors (left and right), but it is also possible
to control the position of the gripper arm and the status of the gripper fingers (open or
close). The control of the gripper is done by means of two procedures: the first procedure,
when activated, moves the arm down, closes the gripper fingers and moves the arm up
again, in order to pick a stick; the second procedure moves the arm down, opens the
gripper fingers, and moves the arm up again, in order to release a stick.

The simulation setup is composed of a rectangular arena of 60x35 cm, surrounded
by walls, and contains five garbage cylindric sticks. Each stick has a diameter of 2.3 cm
and is randomly positioned inside the arena at every new epoch as well as the robot.

Experiments consist of 15 epochs of 200 time steps each, where an evolved controller
is tested over the task. The duration of each time step is of 100 ms. Each epoch ends after
the 200 steps or after a stick has been released out of the arena.

4.2. Neural architectures

Five different architectures were tested with the described setup. The first three archi-
tectures implemented are shown in figure 2. The first one, labelled (a), is a simple feed-
forward network with a hidden layer of four units. This architecture has seven inputs,
corresponding to the six infrared sensors and the gripper sensor, and four outputs that
correspond to the two wheel motors, and to the two procedures of control of the grip-
per (pick-up stick and release stick). The second architecture, labelled (b), is a modu-
lar architecture composed of two control modules. The modules were designed by hand
from a distal point of view. One module controls the behaviour of the robot when it is
looking for a stick, and the second module controls the robot when it carries one. The
third architecture (c) is the emergent modular architecture as defined by Nolfi [12]. In
this case, there are two different modules with seven inputs (the seven sensor values) and
four pairs of output neurons. The four pairs outputs of the first module code for the speed



6

of the motors (left and right) and the triggering of the pick-up and release procedure.
The outputs of the second module determine which of the two competing neurons of the
first module had actual control over its corresponding effector. Those three architectures
were used by Nolfi on his work and are implemented here in order to verify that the setup
implemented produces similar results to that obtained by Nolfi, and by hence, allow us
to compare results.

The two other architectures are the ones that use tactical modularity. The first one,
which we will call architecture (d), is a direct application of tactical modularity over the
garbage collector task. In this case, only one global behaviour is required for the task
(it is, the garbage collector behaviour), and we implement that behaviour using tactical
modularity, it is, the creation of one IHU element for each device involved. Since eleven
devices are involved (seven sensors and four actuators), we use eleven IHUs for the
construction of the controller. No figure is provided for this architecture, because of its
complexity, but it would look like figure 2b with eleven devices. We create a IHU for
each of the infra-red sensors and the gripper sensor, and four IHUs for the left and right
motors, and the two gripper procedures. Each IHU is implemented by a feedforward
neural net with eleven inputs, no hidden units, and one output.

The second architecture we will call architecture (e). In this case, we apply the two
modular approaches to solve the control problem. On a first stage, we use strategic mod-
ularity to define the required sub-behaviours for the global task. We manually decide to
divide the global behaviour of the animat into two sub-behaviours: the first sub-behaviour
should look for a stick while avoiding walls, and once detected, pick it up. The second
sub-behaviour should be activated once a stick is picked up, and it has to avoid other
sticks and go to the wall where leave out the carrying stick. On the second stage, each
of those strategic modules is implemented using tactical modularity, of the same type
as in the previous architecture (d), but now focused on those more limited sub-tasks.
This means that we will obtain two different strategic modules, each one implementing
one sub-behaviour by means of 11 tactical modules. Training of each strategic module
is performed separately, and once they are evolved, they are joined for the final global
controller.

5. Results

We evolved all the architectures using our evolutionary setup. The fitness function re-
warded those controllers that were able to release one stick out of the arena. Controllers
that were able to pick up one stick were also rewarded with a lower fitness. We included
an additional term in the fitness function that decreased the fitness when the stick was
released inside the arena. Like Nolfi did, we implemented a mechanism that artificially
added a stick in front of the robot each time it picked up one stick, in order to increase
the situations where the robot encounters an obstacle in front of it while carrying a stick.
The evolutionary process was performed ten times for each architecture, and the results
presented here show the averaged fitness obtained from those ten runs.

The results, plotted in figure 3a, show that architectures (a), (c) and (d) were able to
reach the maximal performance of releasing a stick in every epoch, and being the only
difference the number of generations that each architecture required to reach that maxi-
mal performance. However, architecture (b) was not able to reach maximal performance.



7

Figure 3. (a) Evolution of the fitness obtained by the best controller of each architecture (left). (b) Evolution of
the fitness obtained by the best controller of each strategic module of the architecture (e) (middle). (c) Number
of times that the best controller of each architecture was able to correctly recollect the five sticks without
displaying any error (right).

These results are consistent with the ones reported by Nolfi, and show that architectures
not based on distal modularization obtain better results.

Evolution of architecture (d) was performed in the same conditions as in (a), (b) and
(c), and as can be seen in figure 3a, took a longer number of steps to evolve the same
behaviour and about the same performance as in (a) and (c).

On the other side, we evolved architecture (e) in two stages. On the first stage, we
evolved the strategic module in charge of avoiding walls and picking a stick. On a second
stage, we evolved the strategic module in charge of avoiding sticks and approaching
walls to release the stick. Both strategic modules were evolved using tactical modularity.
Figure 3b shows the number of evolutions required for the controllers to generate those
behaviours in both cases. Once the two strategic modules were evolved, they were used
on a global controller which used both modules, switching between one and the other
to govern the robot depending on the status of the gripper sensor. The final behaviour
obtained correctly performed the garbage collector behaviour.

6. Discussion

The results obtained in the previous section show that, except in architecture (b), all the
architectures are capable of a garbage collector behaviour with a 100% success rate. Only
the evolutionary time required for each architecture shows a difference between them,
since their behaviours are very similar, including errors about thinking that a stick is a
wall that sometimes appear in the final controllers. We conclude then, that the strategic
and tactical approaches are as good as the others on the garbage collector task.

Having shown that the all the architectures are able to perform the garbage collector
behaviour,the next question may be what is the point about using strategic and tactical
modularity on a robot controller. The reasons are two: first, the use of tactical modular-
ization allows the introduction of new sensors and actuators at any time. This point has
been proved on a previous work [18], where aditional sensors and actuators of an Aibo
robot where introduced at different steps of the evolutionary process. To our extent, no
other architecture is able to do that.

Second, the results obtained with tactical modularization are more robust. In order to
probe that,we perform an additional test. We visually compare the performance obtained
in all the architectures when performing the garbage collector. For this, the best neural
nets obtained for each architecture on each run, were tested into the arena, to see how



8

many times were able the controllers to pick up and release outside the arena the 5 sticks
within 5000 cycles without displaying any incorrect behaviour (those are, crashing into
walls, trying to grasp a wall or trying to release a stick over another). The results are
shown on figure 3c.

7. Conclusions

We have proposed two types of modularisation required for the generation of complex
behaviours in complex robots. We have shown the differences between them and how
they can be combined for the generation of complex behaviours in robots.

Modularisation at the level of behaviour has already been widely used by other re-
searchers. The real new thing provided by this research is the use of a new level of mod-
ularisation focused on the robot devices (tactical modularity), and the demonstration that
the use of both types of modularisation together leads to more complex behaviours in
more complex robots.

Future work includes the application of strategic and tactical modularity for com-
plex behaviours in complex robots. This work has already successfully started with the
application of tactical modularity to an Aibo robot for the generation of a standing up
behaviour [17] and a walking behaviour [18].

References

[1] G. Auda and M. Kamel. Cmnn: Cooperative modular neural networks for pattern recognition.
In Pattern Recognition in Practice V Conference, 1997.

[2] F. Azam. Biologically inspired modular neural networks. PhD thesis, Virginia Polytechnic
Institute and State University, 2000.

[3] K. Chen and H. Chi. A modular neural network architecture for pattern classification based
on different feature sets. International Journal of Neural Systems, 9(6):563–581, 1999.

[4] Ian Davis. A Modular Neural Network Approach to Autonomous Navigation. PhD thesis,
Robotics Institute, Carnegie Mellon University, Pittsburgh, PA, April 1996.

[5] R. Di Ferdinando, A. Calabretta and D. Parisi. Evolving modular architectures for neural
networks. In Proceedings of the sixth Neural Computation and Psychology Workshop: Evo-
lution, Learning and Development, 2000.

[6] F. Gomez and R. Miikkulainen. Incremental evolution of complex general behavior. Techni-
cal Report AI96-248, University of Texas, 1, 1996.

[7] F. Gómez and R. Miikkulainen. Solving non-markovian control tasks with neuroevolution.
In Proceedings of the IJCAI99, 1999.

[8] R. Jacobs, M. Jordan, S.J. Nowlan, and G. E. Hinton. Adaptative mixture of local experts.
Neural Computation, 1(3):79–87, 1991.

[9] B. Lara, M. Hülse, and F. Pasemann. Evolving neuro-modules and their interfaces to control
autonomous robots. In Proceedings of the 5th World Multi-conference on Systems, Cyberbet-
ics and Informatics, 2001.

[10] P. Manoonpong, F. Pasemann, and J. Fischer. Modular neural control for a reactive behavior
of walking machines. In Proceedings of the IEEE International Symposium on Computational
Intelligence in Robotics and Automation, 2005.

[11] Roger McCain. Game Theory : A Non-Technical Introduction to the Analysis of Strategy.
South-Western College Pub, 2003.



9

[12] S. Nolfi. Using emergent modularity to develop control systems for mobile robots. Adaptative
Behavior, 5(3-4):343:364, 1997.

[13] S. Nolfi. Evolutionary robotics: Looking forward. Connection Science, 4:223–225, 2004.
[14] R W. Paine and J. Tani. How hierarchical control self-organizes in artificial adaptive systems.

Adaptive Behavior, 13(3):211–225, 2005.
[15] D. Parisi R. Calabretta, S. Nolfi and G. P. Wagner. Emergence of functional modularity in

robots. In J.-A. Meyer R. Pfeifer, B. Blumberg and S.W. Wilson, editors, Proceedings of
From Animals to Animats 5, pages 497–504. MIT Press, 1998.

[16] J. Tani and S. Nolfi. Learning to perceive the world as articulated: an approach for hierarchical
learning in sensory-motor systems. Neural Networks, 12:1131–1141, 1999.

[17] R. Tellez, C. Angulo, and D. Pardo. Highly modular architecture for the general control of
autonomous robots. In Proceedings of the 8th International Work-Conference on Artificial
Neural Networks, 2005.

[18] R. Téllez, C. Angulo, and D. Pardo. Evolving the walking behaviour of a 12 dof quadruped
using a distributed neural architecture. In Proceedings of the 2nd International Workshop on
Biologically Inspired Approaches to Advanced Information Technology, 2006.

[19] H. Yong and R. Miikkulainen. Cooperative coevolution of multiagent systems. Technical
Report AI01-287, Department of computer sciences, University of Texas, 2001.

[20] J. Ziemke, T. Carlsson and M. Bodén. An experimental comparison of weight evolution in
neural control architectures for a ’garbage-collecting’ khepera robot. In F. Löffler, A. Mon-
dada and U. Rückert, editors, Experiments with the Mini-Robot Khepera - Proceedings of the
1st International Khepera Workshop, pages 31–40, 1999.


