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Abstract. A main goal for the researchers designing smart health care
technology is to develop strategies allowing both, early detection of and
avoid problems that could lead to a decreased independence. Medical
analysis, smart sensors, intelligent software agents, distributed control,
wireless communication and internet resources are research areas im-
plied in home automation delivering intelligent health care. Ubiquitous
computing is the most promising technological approach that can meet
this challenge if their non-intrusive and adaptable objectives are reached,
meanwhile it is able to maintain privacy. Our work is concerned with the
development of a smart home architecture allowing to integrate informa-
tion from a wide variety of sensors and actuators: information recruited
for these elements is processed into microprocessors implementing com-
putational intelligence techniques; cooperative communication between
units is implemented through a wireless net into the home; and inter-
net resources allow to link the home with external services. Within this
general infrastructure, the proposed architecture expands from the con-
version of passive sensors into smart devices (we call them “intelligent
hardware units”) by adding processing capabilities and using them like
plug-and-play mechanisms. Performed experiments on a robotic pet plat-
form show the viability of the present approach and they appoint inter-
esting results to be applied on the entire home.

1 Introduction

The domestic environment is predicted by market analysts to be the major
growth area over the next decade and a prime site for the development of ubiq-
uitous computing [1]. For example, people aged 65 and older are the fastest
growing segment of the US population; by 2030 over 4 million Americans will be
over age 85 [2], and 69.4 million over age 65. Furthermore, over 20% of people 85
and over have a limited capacity for independent living [3], with the result that
they require continuous monitoring and daily care. The creation of a secure, un-
obtrusive, adaptable environment for monitoring health and encouraging healthy
behavior will be vital to the delivery of health care in the future.



The framework of our work is “smart home technology”, i.e. systems that
have sensors and actuators that monitor the occupants, communicate with each
other, and intelligently support the occupants in their daily activities [4]. For
the continuous monitoring in the home environment unobtrusive and inexpen-
sive sensors must be deployed. Meanwhile these sensors are inherently noisy and
unreliable, robustness is usually achieved by the deployment of a large number of
sensors. In our opinion, a more flexible and adaptable option is to integrate mod-
els and algorithms of computational intelligence processing observed sensor data
in order to link them with human behaviors. In this sense, multi-agent systems
[4] and architectures based on smart devices [5] have recently been explored
as monitoring health care systems. Although some good results are provided
from these approaches and interesting lessons have been learnt about reliability
and scalability of the architecture, most desirable features as adaptability and
learning from the user have not been derived.

Some efforts have been dedicated to the multi-agent, internet link and wire-
less communication research areas in home automation. Separately, individual
specific smart sensors with or without communication capacities have been pro-
posed and designed. However, dedicated distributed architectures on smart sen-
sor nodes [6] is yet a research area to be developed. Our approach is to consider
all these devices from an automation perspective [7], and integrate them on a
multi-agent system environment to obtain the valuable features of this former
technology. Hence, sensor and actuator devices are the key to obtain adaptabil-
ity, interfacing between the real world of the user and the machine world of the
software agents. Physical agents or “intelligent hardware units” are created by
embedding flexible computing techniques into the sensors and the actuators, and
communication abilities to share information.

In the home of the future, groups of devices should have enough collective
awareness to function autonomously based on sensor data. Collective intelligence
technology will be essential to analyze data from these distributed sensors. Re-
search through this article focus on achieving the adaptation of soft-computing
algorithms, developed usually as software modules in conventional computers,
being implemented into specific hardware to obtain adaptation to the users.
The most important aim of this vision is to design a collaborative computing
structure that merges the intelligent hardware units with the needed information
processing in order to generate a friendly operating scene through appropriate
user interfaces. This new control structure, just the opposite of the classic hier-
archical implementation, aims to become a decisive stage in the integration of
the autonomous actuation of intelligent software agents into hardware elements
(“intelligent hardware agents”).

The document is organized as follows. In the next Section the proposed dis-
tributed architecture is explained by designing a multi-agent system through the
cooperation of intelligent hardware units with neuroprocessing capabilities and
learning by co-evolution. Performance of the novel architecture is illustrated in
Section 3 by three different experiments, and finally some concluding remarks
are presented.



2 The Architecture

Size and complexity of computing and communication interfaces in every-day
electronic applications is speedily growing due to the accessibility to this tech-
nology for a increasing number of users. There currently exists a certain tendency
to an excessive centralization on a ‘master’ unit when software is designed, so
the functionality of the elements is not exploited in an optimal form. Mean-
while, a number of hardware devices, sensors or actuators, are not as smart as it
could be possible, because the information recruited will overflow the processing
capabilities of the central control element.

Smart home requires a more robust set of features that standard home
automation nowadays provide, including advanced processing algorithms, dis-
tributed intelligence, and stronger communication between sensors and actua-
tors. Multi-agent systems or distributed control, depending the research commu-
nity, is a solution to reduce the complexity into the network of the devices and
to obtain collective intelligence. When each unit is built on its own agent and
all them are actuating in collaboration, the coordinator unit reduce their tasks,
even it would become not necessary no more, or it could be strictly dedicated to
failure detection and robustness purposes.
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Fig. 1. Collaborative control architecture. Each intelligent hardware unit (IHU) is com-
posed of an hardware element, processing resources and communication capabilities.

2.1 Multi-Agent System

A multi-agent system (MAS) is usually obtained when a complex system is
divided into several agents specialized on a concrete task (planning, mobility,
coordinator, ...) and they cooperate to solve a major task [8]. In MAS, all the
participating agents and their coordination are usually codified a priori by the
designer in order to accomplish the task to be completed. Our interest is to
divide the general goal task in a different form.



According to [9], a complex system can be decomposed into a lot of little
agents accomplishing a task with reduced complexity, but collaborating in such
a form that the final system is smart. In this line, our vision is to design a multi-
agent system based on a network of intelligent hardware units (IHU). An IHU is
physically composed by a hardware device, or a reduced number of them sensing
(actuating on) the ‘external world’, and an associated micro-controller (like a 8-
pins PIC) generating decisions from available data and sharing information with
other units (Fig.1), connecting it with the ‘internal world’. The micro-controller
is the part of an IHU processing information and communicating. An external
computer will manages the general goal task to be realized and it will inserts
reliability over all the system.

This is the more direct form to deploy agents into the environment in their
simplest form. Information flowing through the IHU could be processed by a rule-
based expert system when the final effect of its decision be critical for the user
safety. Soft-computing techniques will be used when the device must to adapt
to or learn from the ambient, or repetitiveness must be avoided to eliminate
negative feedback from the user. In order to warranty adaptability, controllers
should be not, or not completely, pre-programmed, as a main difference with
standard MAS. For instance, if artificial neural networks (ANN) are used, their
weights and bias should be initialized with random values. Decisions taken for
the embedded agents and relevant data sensed from the world are available all
around the network through a communication network. Hence, perception is
considered in a modular form, i.e. multiple specialists are dedicated to extract
relevant information for each active behavior.

Main objective is that a certain proportion of agents learn in a no super-
vised form what an individual task they must to implement on their device to
reach the common goal. Because their simple structure, their task is primar-
ily to adequately translate the received or sent signals by the hardware device
connected to them, in such a form that shared translated information allows to
reach the goal task demanded for the user. Learning and adaptation derived from
the information processing allows the smart home to improve its performance in
a number of forms: (a) knowledge is inserted into the system (facts, behavior,
rules); (b) concepts are generalized from multiple instances; (c) information is
more efficiently re-organized into the system; (d) new concepts are discovered or
designed; (e) experience is used.

Appropriated devices selection, wireless communication, user interfaces, and
internet link are necessary to design the whole smart home, however it is out
of the scope of the present document, and it would be considered that they are
available in the home.

2.2 Cooperation of IHUs

The intelligent hardware units conforming the whole net must be doted of such a
sufficient information and decision coordination that a basic behavior can emerge
after a training phase of the processing elements embedded into the micro-
controllers. Processing in each EHI is double. First, by using a soft-computing



algorithm, to translate and to interpret information shared through the commu-
nication network and to determine what to do about. A learning in two phases,
off-line and on-line must be developed. Second task is, from sensed data, pro-
cessing the information and augment it to translate for the rest of agents.

Communication between IHUs becomes a very important working element
in this implementation [10]. It allows IHUs to send information to each other
in order to correctly cooperate. During the training phase, the information sent
between physical agents is used to learn coordination. When training is finished,
IHUs have learnt how to treat information about the state of other elements
to collaborate with them, and they will use communication to maintain that
coordination. Furthermore, communication gives reaction capabilities in front of
unexpected situations [11] to the automation home, including plugging and shut
down of some integrated devices. Similar architectures have successfully been
applied in real time control systems, like for example the control of two building
elevators, or warehouse management, where a complex communication system
including contracts and requests, was required for a proper collaboration of the
different agents [12].

Common goal to be achieved for the system is sent to the cooperative net-
work in the form of instructions of middle-level language. Fuzzy logic, kernel
machines and qualitative reasoning are soft-computing techniques dealing with
this kind of information. Each device (sensor, actuator, multi-sensor, sensor-
actuator, multi-actuator) into an IHU is governed by a micro-controller (Fig.2).
Its computational capacity varies according to the process to be implemented,
memory resources and execution time. A real time communication network re-
cruits shared information sent by the IHU’s, and themselves determine what to
do with this data, according to both, the knowledge about the global task and
the information relative to the associated device.
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Fig. 2. Working methodology for a certain intelligent hardware unit (IHU).



2.3 Learning Algorithm: Distributed ESP

Learning the required system controller can be done by several methods. One
demonstrated successful is neuro-control, it is, the use of neural networks to learn
to implement the control policy. Neuro-control learning can be implemented
using supervised training or neuro-evolution. While supervised learning uses a
series of examples to train the networks by methods such as backpropagation,
neuro-evolution uses genetics algorithms to evolve the required neural nets. The
advantage of neuro-evolution over supervised learning is that it doesn’t needs
training examples to acquire the control knowledge. Neuro-evolution will also
allow the robot to learn any required task to complete the job, without been
specified before hand.

Due to the necessity of controlling multiple IHUs and to allow cooperation
between them, a co-evolution method to obtain a proper control policy will be
required. Co-evolution is a neuro-evolution method for the evolution of different
nets with different roles in a common task. There are two types of co-evolution
methods: competitive co-evolution, where the role of each agent is against the
role of the other agents; and cooperative co-evolution, where agents share rewards
and penalties of successes and failures. The last type will be the one used for the
proposed architecture since each IHU processing subpart is evolved on its own
population and interacts and cooperates with the others to solve the problem,
contributing its best to the final solution.

The co-evolution algorithm used here is a version of the Enforced Sub Popu-
lations algorithm (ESP [13], [14]) with some modifications to obtain a distributed
controller. It is a neuro-evolution method to evolve sub-populations of neurons
forming a global neural network. In this process, groups of single neurons are
created (called sub-populations), and a neuron is selected in a certain genera-
tion from each sub-population to form a hidden layer unit of a global neural
network3. Every neuron inside one of the groups of sub-populations encodes
with real values the state of the connections of such neuron within the global
ANN. The information coded on every neuron is called the genome and it is the
information that is evolved by the genetic algorithms.

To score the performance of the evolved neural network on the domain, a
fitness function is created. The fitness function has to be calculated (and of-
ten, fine tuned) experimentally. It mathematically defines the global behavior
required for the system. The fitness is an evaluation score of the neuron’s per-
formance inside the global ANN. During co-evolution, the nets of all IHUs must
have a reward provided by the same fitness function. In [15], it is showed that
rewarding the whole team with the same fitness produces cooperation between
agents, while rewarding each agent with its own fitness value induces more com-
petitive behavior, because every agent tries to maximize its own reward without
paying attention to the group’s goal.

The ESP algorithm implemented here follows the description in [16], includ-
ing delta-coding to prevent premature convergence [14].

3 In fact, the global neural network is each local neural network associated to an IHU.



3 Experimentation

From the human-factors perspective, a key constraint to creating ubiquitous
technologies for monitoring health status into a smart home is that the technol-
ogy must be unobtrusive. If people must take active participation in collecting
the data about their health status, the data collected will be unreliable. Further-
more, if people remains aware of the presence of the technology, they are apt to
change their behavior.

Robotic pets are being nowadays exploited as a successful option to insert
technology into the home environment. In the perspective of our study a mobile
robotic platform is very interesting because: (i) it is a current element being
inserted into the homes; (ii) it allows to use sensors and actuators in a lim-
ited number; (iii) the common goal to be reached can easily be tested; (iv)
autonomous robots are usual testing platforms for MAS and control architec-
tures. So, experiments performed in this platform can be directly exported to
the home environment, and it can be re-used for the autonomous robot research
area.

The goal is to obtain an autonomous robot, a robotic pet, able to find a
person on its space and then start orbiting around her in an endless loop: the
pet will be randomly placed in some free point of the home where a person
stands; first, it will look for the person using a random search algorithm or some
RFID element; once it finds her, it will start orbiting around her at a close
distance. In this form, it is possible, for example, to obtain health monitoring of
a person arriving to his home, meanwhile the pet orbits around him, or through
a certain variable scheduling.

This behavior will have to emerge by making cooperate four IHUs inside the
pet. The simulated robotic pet used for the experiments consists of a squared
platform where two infrared sensors and two motors are attached4. Three wheels
control the movement of the robot: two wheels at the bottom, controlled by one
motor each one, and a free wheel at the front, which gives stability but no control.
Infrared sensors are placed at the upper-left corner of the robot, one pointing
to the front and another pointing to the left, being able to detect objects from
a range between 3 and 20 cm. The detection values of the sensors have been
quantized in order to keep the whole system simpler. It will be considered that
an object is far when distance is greater than 20 cm; half distance when it
is between 20 and 10 cm; close when 10 and 6 cm; and very close when it is
between 6 and 3 cm. Motors are placed at both lower corners of the robot. Their
range of velocities has been also quantized, only allowing 4 different values: full
forward, half forward, stop, and half backward.

Four different IHUs are required to represent the whole system (Fig3), one
for each IR sensor and one for each motor, implementing a feed-forward artificial
neural network with sigmoid activation function and one hidden layer with 12
neurons. All the nets have only one output neuron. Communication between

4 2 Sharp GPD202 IR sensors and 2 standard DC motors were simulated.



IHUs is performed by connecting the outputs of the neural networks to the
inputs of the other nets, including itself.
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Fig. 3. Architecture for a robotic pet controlled by four IHUs.

Three types of experiments were developed to cope the features of the pro-
posed architecture. First an experiment using ESP with a central controller, a
second one using the distributed controller version of the ESP, and finally a third
experiment, specifically devoted to analyze the intelligent hardware sensors.

3.1 ESP Learning for a Central Controller

For the central-controller approach, only one neural network is required, be-
ing the inputs the quantized data from motors and sensors, and outputs the
responses for the motors; no output were required for sensors since they are
passive elements. In order to obtain the required behavior the following fitness
function was defined,

F =
{

+1, if Sx = close ∧ Sy = far ∧ SpeedL > 0 ∧ SpeedR > 0
−1, else

(1)

rewarding neurons only when the robotic pet is running with both wheels, de-
tecting an object on his left at close distance, and detecting nothing in front of
him. When the previous condition is not met the group of neurons is punished.



By punishing in this way the pet tries to find the person as soon as possible.
The required behavior was obtained after an average of 140 generations, being
the maximum fitness obtained of 239 out of 300 steps. Another interesting result
is that even when evolution was left running for several hours until generation
1500 is reached, fitness never improved, having a maximum of 240.

3.2 ESP Learning for a Distributed Controller

The ESP learning algorithm designed by the UTCS Neural Nets Research Group
[17] was modified to train one neural network for every IHU, in a distributed
form. All the networks were evolved at the same time. The multi physical-agent
system was obtained by using parameters similar to those employed for the
centralized controller, and the same fitness function in order to obtain the same
evolved behavior.

Significant differences with respect to the central control experiment can
be observed: first, the average number of required generations to obtain the
same behavior was drastically reduced (78). Secondly, when evolution was left
running, the obtained maximal fitness reached values of about 260. Both results
empirically show that a distributed controller works and it can learn faster and
better than a central one, as was stated in [7] for the predator-prey game.

3.3 Intelligent Hardware Sensors

When using four IHUs to control the pet, the question about the necessity of
using neural networks in the sensors arises. Since its only job is to receive the
value from the sensor and share it with the rest of agents, is it really necessary
to use those processing units in such passive elements? Is the neural network
attached to the sensors doing any active job? To answer these questions, a third
experiment in two phases was performed .

First, a distributed controller with only two IHUs was designed, one IHU
controlling each motor and directly connecting the output of the sensors to
the ANNs of those actuators, hence no neural nets were attached to the sensors.
Results show that the final robotic agent is able to acquire the required behavior,
but his fitness dropped down a little bit (an average of 232 out of 300, against
254 out of 300 for the four agents distributed controller). From the result of this
first experiment, it can be concluded that sensor agents are really doing some
helpful job, but maybe the improvement is not enough significant if the higher
processing cost is considered.

The second phase of the experiment was concerned with the achieved learn-
ing of the sensor agents. Learn intelligent hardware sensors some abilities from
the relation internal-external world? or are they sharing only their sensed value,
without any interesting processing on it? To ask this question, function learned
by the ANN associated to a IR sensor X was plotted under two different circum-
stances. Fig.4, on the left, shows the function learned by sensor X according to
the distance sensed when Motor L and Motor R value half-speed and sensor Y
senses nothing.



 

Fig. 4. ANN output learned by the IR sensor X. Because function depends on 4 vari-
ables, sensor Y, Left motor and Right motor have been fixed, showing only the depen-
dence of the network output in front of sensed X values.

Then, the code emulating the sensor X was modified to insert a failure. Failure
consists on allowing to sense objects only at close and very-close distances. After
this modification, the 4 IHUs were evolved again, and Fig.4 (right) plots the
resulting processing function of the sensor X ANN when Motor L and Motor R
value half-speed and sensor Y senses nothing.

Comparing both figures, it can be seen that the IHU is learning how to process
the input signal, and this processing highly depends on the sensor behavior. First
of all, plots in Fig.4 show that the sensor agents are actives and they are not
only taking the value sensed and sharing it to the rest of IHUs. Second, their job
depends on the situation. So, it is possible to use ANNs on the sensors able to
adapt by themselves to a noisy environment and learn what kind of treatment
would be necessary to take the most of the environment to perform the required
task.

4 Conclusions

Automation systems in smart homes are concerned with sensors and actua-
tors that monitor the occupants, communicate with each other, and intelligently
support the occupants in their daily activities. Collective intelligence technol-
ogy will be essential to analyze data from these distributed sensors. Research
through this article focus on achieving the adaptation of soft-computing algo-
rithms, developed usually as software modules in conventional computers, being
implemented into specific hardware to obtain adaptation to the users. The intro-
duced approach to the control problem of the complex system use a division into
agents in a very lower complexity level that it is usual in MAS, allowing a higher
implication between the physical and computing components if it is compared
with standard literature.

A main feature of the proposed architecture is that it is not even necessary
to codify a priori the task to be developed for each agent to reach its objective;
moreover, it is not necessary at all to specify the particular goal for each agent,



only the desired global goal task is indicated by the designer. This very inter-
esting feature is obtained because the reduced computing complexity associated
to each IHU. Implicitly, system suppose that it there exists some reactive con-
nection between sensors and actuators, so that information generated for these
physical elements is translated according to the necessities of the ensemble of
agents and the degree of goal task accomplishment for each IHU. No IHU is in
charge of any specific activity, that means, a certain sub-goal of the global task.
Implication of any IHU in the general process is self-recognized for them during
the not supervised learning phase.

Experimentation on a simulated robotic pet platform shows that the novel
architecture improves its centralized counterpart, it learns faster and better. In-
crease of complexity associated to the collaborative organization is rewarded with
a more efficient control of the system. Meanwhile robustness has been demon-
strated thanks to the processing capability of the intelligent hardware sensors,
scalability of this architecture is a open research problem being dealt following
MAS approaches.
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