
Autonomous Humanoid Navigation Using Laser and Odometry Data

Ricardo Tellez, Francesco Ferro, Dario Mora, Daniel Pinyol and Davide Faconti

Abstract—In this paper we present a novel approach to
legged humanoid navigation on indoor environments using clas-
sical probabilistic SLAM methods based on odometry informa-
tion and laser measurements. We use two small lasers installed
in the robot feet to capture the laser data. Odometry is obtained
by calculating the position of each feet at every time step. The
SLAM problem is solved by using a multi-laser SLAM solution
together with a holonomic motion model. Navigation skills also
include a path planning module with obstacle avoidance for
autonomous navigation in indoor environments, and the whole
process is performed without external computational power.
Optionally, localization robustness is increased by adding the
detection of landmarks using a camera. Results obtained are
presented for the 1.5 m tall Reem-B humanoid robot.

I. INTRODUCTION
Simultaneous Localization and Mapping in legged hu-

manoid robots is a difficult issue, mainly due to the fact that
traditional SLAM techniques based on laser and odometry
data cannot be used. The main reason is that laser devices are
very heavy and cannot be mounted onboard a humanoid. On
top of that, in some cases where researchers have achieved
to include lasers on a humanoid [1], [2], the large number
of degrees of freedom makes very difficult to take stabilized
measurements of laser-odometry.
For those reasons, SLAM implementations in humanoids

are mainly based on the use of vision. Instead of using laser
devices, cameras are used to identify landmarks, converting
the SLAM problem into a vision one [3], [4], [5], [6]. For
instance, the QRIO robot uses a stereo camera to self-localize
and identify possible paths to goals [7]. The HRP robot
achieved to use a small laser mounted on the robot’s mouth
[1], [2] in addition to the use of the camera to create complex
3D representations of the environment. However, due to its
inability to correctly measure the laser position, its use was
merely relegated to the identification of obstacles.
In this paper, a novel approach is proposed based only

on laser and odometry data. Two small lasers are mounted
on the feet of the robot and used to navigate. Using this
setup, the robot is able to solve the whole problem of
navigation, that is, generate maps in real time, localize on
it, and even autonomously navigate using path planning and
obstacle avoidance. Additionally, and as an optional feature,
the robot makes use of its stereo vision camera to increase
the localization robustness and allow quick recovery in lost
situations. The paper is divided as follows: in section II, a
description of the humanoid platform is provided including
the hardware setup required to perform navigation. Section
III describes the algorithm used to perform mapping. Section

Pal Technology Robotics
Paris 175, 4-1, Barcelona, Spain, tellezatwork@gmail.com

Fig. 1. Reem B robot used for the experiments

IV describes the localization system. In section V, there is a
description of the path planning method used, together with
the obstacle avoidance module. Each section includes the
results obtained when applied to the real robot Reem-B.

II. HUMANOID PLATFORM

The humanoid robot used is called Reem-B, a humanoid
robot of 1.5 meters tall built by Pal Technology. Its weight
is about 60 Kg with an autonomy of about 120 minutes.
Among other abilities, Reem-B can carry loads as heavy as
12 Kg, and walk at a maximum speed of 1.5 Km/h with
a great stability. The walking algorithm is based on a zero
moment point approximation [8].
In order to feed the SLAM algorithm with sensor data, the

robot is equipped with two small Hokuyo lasers [9] mounted
on its feet (figure 2). Each laser is configured to scan 180
degrees on an angle that is rotated 30 degrees from the
foot center. This rotation allows the detection of obstacles
behind the robot, and avoids self-detection of the other leg.
Angle resolution is of one degree, what makes a total of 360
measurements to be processed by the algorithm at every time
step.
To provide a stabilized data measurement, the movement

of the feet when stepping is maintained parallel to the
ground by the walking algorithm. This fact, assures that the
measurements made by a laser in movement corresponds to
a unique inclination. Measurements taken in this way are
surprisingly very stable, as can be observed in figure 3. This
situation allows the use of the laser scanned data on a regular
basis with independence of movement status of the foot. In
order to use this information it is assumed that there are no
obstacles with a height between the laser height when the



Fig. 2. Image of the two lasers mounted on the feet (left), and diagram
of the scanned range of each laser seen from top (right)

Fig. 3. A measurement made by the left laser foot at 180 degrees, when
the robot looks parallel to a wall, at 6 cm aprox. At some point in time,
the foot is moved up and forward (showed by the dotted line). The graphic
shows that there is no notable difference between the measurement with the
foot on the ground or with the foot on the air.

feet is on the ground and when the feet is at its maximum
height (see section VI for a discussion on that).
Odometry is obtained with an inverse kinematic compu-

tation by the walking algorithm, providing at each step the
(x,y,z) position and (θ, ϕ, φ) angles of each foot within a
global coordinates axis, in a similar way as provided for a 2D
mobile base. For our algorithm, only the (x,y) coordinates
and the θ angle (as projected over the (x,y) axis) are used
to indicate the orientation of each laser, in a similar way
as in typical SLAM with wheeled robots. The z coordinate
is not used in the algorithm, and the other two angles (ϕ,
φ), which are the angles projected over the axis (x,z) and
(y,z) respectively, are maintained constant during the whole
walking movement.
The robot is equipped with two PC104 stack based com-

puters, which provide all the computational power required to
perform all the navigation and control tasks. This means that
all the algorithms required to perform mapping, localization,
path planning and obstacle avoidance are executed inside the
robot. Only the visualization tools used to take pictures of the
maps and observe localization status where run on external
computers to the robot itself. This fact makes the Reem-B
one of the most autonomous robots of the world of its size.

III. SLAM ALGORITHM

Localization and mapping abilities of the robot are based
on the use of particle filters. For the implementation of the
SLAM feature, we have selected an algorithm called DP-
SLAM [10], [11]. This is a very interesting algorithm, since
it allows an almost real-time generation of maps, without
requiring posterior post-processing. This means that our
robot creates its environment map at the same time that it

walks around it, and, if correctly tuned, no further processing
is required. Once the map is completed, the robot can directly
change its operation mode to localization (see section IV),
and start using the map for localization and path planning,
without requiring any additional step.

A. DP-SLAM algorithm

The DP-SLAM algorithm uses a particle filter to maintain
a joint probability over robot pose and maps. This implies
that the algorithm is able to solve map ambiguities during
the particle filter execution. Furthermore, it doesn’t need any
additional phase to produce the map and/or close loops.
The difference with similar algorithms [12], [13], [14] is
the technique it uses to maintain the large number of maps
efficiently by exploiting redundancies between maps. The
authors have developed a method called distributed particle
mapping. Instead of explicitly maintaining multiple maps, the
algorithm maintains a single map matrix that represents the
grid map, and includes in each grid the observations made
by different particles.
DP-SLAM maintains an ancestry-tree of particles, where

current particles are the leaves. The parent of each node is
the particle of the previous iteration before resampling. This
ancestry tree is used to retrieve the exact lineage of a given
particle at any time, and then reconstruct the best current
map.
We have made a C++ adaptation of the algorithm de-

scribed in [11], which is an improved version of a previous
algorithm described in [10]. We implemented the algorithm
with a modification to the particle filter for its use with the
humanoid by using a multi-laser approach.

B. Multi-laser particle filter

The laser data required to localize the robot is generated
by two laser devices. Each laser is localized on one of
the robot feet, providing a 181 lecture data points. Even
if the position of the two feet are directly related by the
mechanical structure that ties them up, it is possible for each
foot to have a different position and orientation. This means
that the relative position of each laser respect to the other
is not maintained over time, but it changes as the robot
moves. Since the generation of a single robot map should
accommodate the lectures of both lasers, a special method
to combine them into the same probabilistic process has been
adopted.
For the resolution of this problem, we take a multi-laser

approach. We see the robot as a single holonomic wheeled
robot, where particles represent the position of the left feet,
as centered in the robot center. Right feet laser position is
obtained by the combination of the current relative position
to left-laser and a gaussian distribution of noise. By doing
this, it is possible to estimate the posterior probability over
one robot trajectory (the one of the left feet) and one single
map.
Observations provided by each laser are introduced into

the particle filter as if they where of a single robot, where



each observation correspond to a determined estimated po-
sition of the related laser.
Then, each particle of the filter will contain as probabilistic

values the pose of the left-foot foot, and the joint map〈
xleft

t , mt, wleft
t

〉
.

Given an observation tuple (z left
t , uleft

t , zright
t , uright

t )
the update rule for one step is for each particle i:

xl
it = A(uleft

t−1 , xleft
t−1 ) xright

it = A(uright
t−1 , xright

t−1 )

mit = M(zleft
t , xleft

it , zright
t , xright

it ) + mit−1

ωleft
it = S(zleft

t , xleft
it , mit−1)S(zright

t , xright
it , mit−1)ωleft

it−1

where
〈
zleft

t , xleft
it

〉
, is an observation tuple for laser left

at time t, A is the actual model, M is the motion model, S
is the sensor model, and ωi is the weight for particle i, and
mit is the map guess of particle i at time t.

C. Motion model
The motion model is in charge of describing the relation-

ship between the odometry lecture and the actual pose of the
robot, taking into account the previous step position of the
robot. For our particle filter, the motion model is based on
odometry measurements, and it is defined for an holonomic
robot. This model is applied only to the left laser in order to
obtain the next step position of that foot. Laser right position
is then calculated directly from the odometry related to the
obtained position of the left foot, and an additional gaussian
noise.
The motion of left foot is decomposed into two principle

components. D will represent the movement through the
major movement direction, and C will represent the shift
experimented by the foot in the orthogonal direction to the
major direction.

xt = xt−1 + Dcos(θt−1 + T
2 ) + Ccos(θt−1 + T+π

2 )

yt = yt−1 + Dsin(θt−1 + T
2 ) + Csin(θt−1 + T+π

2 )

θt = θt−1 + T mod 2π

where θt is the facing angle of the robot foot at time t,
and T is the actual turn performed. Hence, we approximate
the major axis direction at time t by (θt + T

2 ) and the minor
by (θt + T+π

2 ).
Parameters of the motion model have been tuned using

the algorithm described in [15], where the parameters of
the model are obtained by a learning method from recorded
laser-odometry data of the robot. Basically, it consists of us-
ing an expectation maximization algorithm (EM) to estimate
the model parameters. The expectation step is provided by
the execution of the DP-SLAM algorithm on recorded data,
starting with some random initial parameters. The possible
trajectories obtained are then used in the maximization
phase to create a set of parameters which best describe the
motions represented by those trajectories. We refer the reader
to Eliazar’s paper for further information about how this
optimization algorithm works.

Parameters Value
Num. particles 1000
Grid size 3 cm

TABLE I
TABLE OF PARAMETERS USED FOR THE DP-SLAM ALGORITHM.

D. Sensor model
The sensor model is the same as described in [11]. It is

a very complete model which takes into account occlusions
in the ray, and depends on the distance traveled through a
grid square. As counterpart, the model uses far more CPU
than the typical raytracing algorithms. The model is based
on the concept of opacity of map grids. The opacity term
basically describes the probability that a laser crosses the
grid, and is calculated from the number of rays that reach
the grid divided by the distance travelled through that grid.
The opacity of a grid defines the probability that a laser ray
is interrupted on that grid (Pg), after it travels a distance x
through that grid of opacity ρ. This behavior is modeled by
an exponential distribution:

Pg(x, ρ) = 1 − e−x/ρ

Then the probability that a laser stops at square j is
calculated as the probability that the laser travels up to grid
j-1, and then stops at grid j:

P (stop = j) = Pg(xj , ρj)(1 − Pg(x1:j−1, ρ1:j−1))

The probability of a measurement is then the sum, over
all grid squares in the range of the laser, of the product of
the conditional probability of the measurement given that the
beam has stopped, and the probability that the beam stopped
in each square. This sensor model allows for the traveling of
non uniform distances over different grids.

E. Map generator
The generation of the map is not performed using a simple

ray-tracing algorithm. It is based on the special computation
performed by the sensor model described in section III-D.
For each grid, the algorithm maintains a computation of the
total distance travelled through that square by a laser beam,
and the number of times that a laser ray has stopped in the
square. The ρ estimation is then provided by the quotient
between the distances and the stops. ρ is used to indicate the
opacity of that grid in the map construction.

F. Results

The maps generated by our robot are shown in figure 4.
They were generated in realtime while the robot was driven
by a joystick. The quality of the maps is impressive even
when the robot moves at its highest speed (1.5 km/h) and
the update rate to the particle filter is produced only twice
per second1. Those good results may be explained by the
fact that two lasers are used and when one laser is moving

1Due to the limited computational power onboard the robot



Fig. 4. Some map examples created by Reem-B

the other one is static. The staticity of one laser over the
same group of particles may decrease the particles diversity,
but on the other side, the low update rate of the filter may
increase the diversity, creating a kind of compensation effect.
This statement will be confirmed in future work.

IV. LOCALIZATION
Once a map has been created by the SLAM algorithm, the

robot can change its status to localization mode, via a vocal
or GUI command, and start localizing on the generated map
with no additional (post-processing) steps. Localization over
that map is performed using a typical MonteCarlo particle
filter approach.

A. Particle filter description
The localization module of Reem-B uses the same particle

filter and motion model as for mapping (described in sections
III-B and III-C). However, in order to improve the speed of
the algorithm with more particles, a simpler sensor model
for localization has been used. A typical sensor model based
on a distance map is used (as described in [13]), which does
not include the detection of occlussions. The practical results
showed that the model is good enough to localize the robot
with quite good stability in typical office setups.
Particles are created for one single feet and then replicated

for the second one with added gaussian noise. The particle
filter then maintains only one single group of particles as
described in section III-B. The simplification of the sensor
model allows the increase of particles used for localization,
which is a very important factor specially when global
localization or kidnapping are required.
In the case that the measurement of the matching decreases

below a certain level, new gaussian noise is added to the pose
estimation. Whenever the diversity of the particles reaches a
threshold, particles are randomly distributed over the whole
map, and the filter started again. This mechanism allows for
a correct recuperation of the robot localization when starts
up or when it is kidnapped.

B. Results
In an office environment, the robot localizes itself quite

quickly and maintains its localization quite stable even when

small obstacles and a few people is around it, which were not
included into the original map. However, when larger obsta-
cles are present, the localization quality decreases rapidly. Is
work for future to implement on the robot some filters [16]
that improve localization under those circumstances.

C. Improved global localization

In order to improve the localization abilities of the robot,
an additional localization mechanism has been implemented.
It consists of using visual information to re-localize the
robot when the localization status decreases below a certain
threshold of confidence.
During the map creation phase, the robot is allowed to

acquire visual landmarks whenever required. Whenever the
process of acquisition of visual landmark is activated, by
a voice command, the map will include a snapshot of the
current visual field, and attach this snapshot to the position
detected by the robot. The distance of the snapshot is calcu-
lated from laser information. Due to this issue, the snapshot
feature requires the robot to be stopped while capturing the
landmark, and is limited to its use for landmarks on walls
and with free space from the feet to the wall.
Whenever the localization confidence of the robot de-

creases a certain level, then it will automatically start a
process to identify on its visual field any of the snapshots that
are stored in the map. If one of the snapshots is identified,
then the particles are spread around the landmark with an
amount of gaussian noise.
Landmark distance to robot is calculated by the left-foot

laser only during map creation, since the laser is more precise
and the environment can be easily controlled during map
creation. Instead, when the robot is left alone, distance to
landmarks has to be performed using vision, since it cannot
be assured that no obstacle will interfere the laser. Because of
that, the recognition of landmarks is not affected very much
by movement of the robot or the existence of small obstacles
between the robot and the landmark. As drawbacks, we have
a big difficulty recognizing objects in ambiance with bad
light, and that the distance calculation from a stereo image
is not very precise.
During the experiments performed, we observed that in

indoor office-like environments, the particle filter based on
laser was very stable and did not require the use of the vision
add-on. Only in cases with crowded rooms the localization
confidence decreased considerably and the visual localization
system activated.

V. PATH PLANNING WITH OBSTACLE AVOIDANCE

The path planning module is integrated with the localiza-
tion and mapping system. Using the maps created and the
current estimated robot position, the path planning module
is able to calculate a safe path to a requested goal position in
the map. Then the module commands the robot from current
position to the goal position following the path planned while
avoiding obstacles. Destination points are requested via voice
(for predefined locations) or through a control GUI which



Fig. 5. Sequence of global localization. The robot is switched on at the left most picture. Then it is moved with a joystick and localization improves
with it. Red dots represent the left foot position guess, and green dots the right one. Blue dots are the currently sensed obstacles by the lasers. They must
match the map structure when correctly localized (as in the right-most picture).

shows the current map on an external computer and allows
the selection of the destination point.
The autonomous navigation ability of Reem-B is decom-

posed in three different parts [17]: motion planning, motion
control and obstacle avoidance.

A. Motion planning
Motion planning is performed in three phases:
On the first phase, the currently sensed obstacles by the

lasers are included on a temporal copy of the current map,
resulting in what we call an updated map (figure 6-left).
Second, a distances map is generated from the updated map
(figure 6-center). The distances map provides the places in
the map that are away enough from obstacles (safe places for
the robot), given the action radius of the robot. The trajectory
is then calculated over the distances map. Only the free points
in the map are taken into account on the calculation of the
trajectory.
The trajectory is calculated using the A* algorithm. The

computed path follows the points in the map that are safe
enough for the robot, and provide the shortest trajectory
possible. The trajectory provided by the A* algorithm (raw
trajectory) is very abrupt which makes very difficult for the
robot to follow (see pink line in the trajectory plot in figure
6-right). The trajectory is then translated to a set of straight
lines (filtered trajectory) that best fit the raw trajectory (blue
lines in figure 6-right). The filtered trajectory calculates the
straight lines that best fit in the raw trajectory. The final step
of the motion planning module calculates from the filtered
trajectory the required steps for the robot to follow that
trajectory. Steps indicate in local coordinates of the robot
where the feet must be in order to follow the trajectory.
The calculated steps are sent to the walking server, which

translates foot position into the required angles for each
motor, performing the actual walking movement of the robot.

B. Motion control
Once the trajectory has been calculated over the map, it

has to be performed by the robot. This is a different problem
from motion planning which is called motion control. Imper-
fections on localization, motion of the robot, and the map,

Fig. 6. The left most figure shows the map used for navigation. The
centered figure shows the calculated distance map, over which, a trajectory
will be calculated. The right most figure shows the trajectory generated by
the path planning algorithm from the robot (represented by two dots in red
and green), and some free point in the map. The trajectory is composed of
two different lines: first one, in violet, is the raw trajectory calculated by
the A* algorithm. The blue line is the smoothed trajectory. Is this smoothed
trajectory the one that the robot will follow.

generate differences between the trajectory planned and the
real trajectory followed by the robot.

To detect those errors, the robot is equiped with a control
of motion system which calculates at every time step a
measurement of the difference between the trajectory path
and the actual robot position. Difference is measured in terms
of position and direction of movement. The direction mea-
surement indicates how different is the current orientation of
the robot related to the orientation it should have to follow
the calculated line of motion. The position measurement
indicates how far from the current line of motion is the robot.
Both differences are obtained through a direct connection
with the localization module which indicates where the robot
actually is in the map.

The motion control module modifies the angle of the
steps in case of errors. Whenever the orientation of the
robot is above a minimal angle, steps are corrected without
replanning. If for any reason, the position of the robot goes
outside the route planned by a certain threshold, a complete
replanning is performed.



Fig. 7. Security zones of movement of the robot for the feet. Figure shows
three different zones per foot, one for front movements, one for diagonal
movements and another for lateral and backwards movements. There is some
overlap between the front zones of both feet.

C. Obstacle detector with replanning
In order to avoid obstacles in the direction of movement,

Reem-B is equipped with a module that detects obstacles in
the path and replans if necessary. The robot has six security
zones defined (see figure 7). Those zones are the secure
movement space for the robot. If an obstacle enters one of
the zones, and the direction of movement of the robot is
within that zone, then the obstacle detector will signal this
and stop the robot. Then a replan of the trajectory to goal is
performed, taking into account this new obstacle.
The distance at which the robot detects obstacles is tuned

by two parameters that specify the maximal front and lateral
distances at which the obstacles will be detected. At present,
those distances are set to 1.5 meters and 50 cm respectively.
Obstacles detected within the security zones will only in-
voque replanning when the direction of movement of the
robot goes in the direction of the obstacle.
Future work includes the real time modification of walking

steps to dynamically avoid obstacles without replanning, by
using a potential field method.

D. Results
The tests performed allowed the robot to move au-

tonomously in office ambients. The test performed show
that the robot is capable to move coherently in spaces big
enough to allow the robot move freely. In smaller spaces the
movement becomes less fluid. The results show that the robot
does replan just in a few cases, mostly because of errors in
the movement due to sleep movements in sleepy grounds.
Figure 8 shows one of those cases. Figure 9 shows a change
in trajectory when the obstacle detector detects an error.

VI. DISCUSSION

On the previous section, the results presented show that,
when a map is available, Reem-B can autonomously and
safely move inside and office environment. However, we
must point that in fact there are two modes of actuation
for Reem. On the first one, the robot is joystick driven
while generating the map. On the second one, while moving
through the map using trajectories generated by the path
planning module, the robot is completely autonomous.

Fig. 9. Sequence of path planning-2. At the left-most picture, the robot
generates a trajectory to a goal point, that is not looking at (the robot is
oriented to the opposite side). Once the trajectory is planned, the robot
starts moving (rotating) towards that goal while avoiding obstacles. When
rotation is completed, the robot detects an obstacle just on its trajectory.
Then a replan is made, taking into account the newly detected object. The
new trajectory completely avoids the obstacle detected.

When in autonomous movement mode, the robot achieves
with no problem to move around the obstacles and reach
the desired position on the map. However, the movement of
the robot is not fluid at all and fluidity decreases as far as
the space becomes more cluttered. This is a limitation of the
current path planning approach taken which does not define
the trajectory as a continuos one, but as a set of straight lines
that the robot has to follow. At the end of each line, there is a
turn required to face the direction of the next line. This turn,
stops the robot from its current forward motion. When the
space is full of obstacles, the trajectory is composed of large
groups of small lines, what produces the effect of low fluidity.
This will be changed in the future, by planning the steps
directly through the trajectory provided by the A* algorithm.
The mechanism presented can be improved in several

points, as has been indicated along the text, but even on
its present state, it is the first time a humanoid robot of its
size uses classical laser-based techniques to guide a human-
size humanoid robot in all the navigation skills required for
an autonomous robot.

VII. CONCLUSIONS
Complete navigation abilities for a human size humanoid

robot have been shown2. Even if with some limitations, this
is the first time that a humanoid robot of human size is able
to generate a complete map of its environment, localize on
it and move autonomously on it. Those navigation abilities
together with the characteristic that the robot has long lasting
batteries (more than two hours), and all the computational
resources required to control it are onboard, make of Reem-
B one of the most autonomous humanoids in the world of
its size.

REFERENCES
[1] S. Thompson, S. Kagami, and K. Nishiwaki, “Localisation for au-

tonomous humanoid navigation,” in IEEE-RAS International Confer-
ence on Humanoid Robots, 2006.

[2] S. Thompson, Y. Kida, A. Miyazaki, and S. Kagami, “Realtime
autonomous navigation with a 3d laser range sensor,” in Proceedings
of 3rd Int. Conf. on Autonomous Robots and Agents, 2006.

[3] K. Okada, M. Inaba, and H. Inoue, “Integration of real-time binocular
stereo vision and whole body information for dynamic walking navi-
gation of humanoid robot,” in Proceedings of Int. Conf. on Multisensor
Fusion and Integration for Intelligent Systems, 2003.

2A video showing all the navigation skills described in this paper can be
found at www.pal-robotics.com/media.html



Fig. 8. Sequence of path planning-1. At the left-most picture, the robot is located at one corner of the room. Then it generates a trajectory to the opposite
corner. Once the trajectory is defined, the robot moves towards the goal point while avoiding obstacles. At some point in the trajectory, the robot moves
too far from the planned trajectory. Then a replan is made, and the robot follows the new trajectory until the end goal position.

[4] N. Karlsson, E. di Bernardo, J. Ostrowski, L. Goncalves, P. Pirjanian,
and M. Munich, “The vslam algorithm for robust localization and
mapping,” in Proceedings of the 2005 IEEE International Conference
on Robotics and Automation, 2005.

[5] A. J. Davison, O. Stasse, and K. Yokoi, “Vision based slam for
a humanoid robot,” in International Conference on Robotics and
Automation, April 18-22 2005.

[6] A. J. Davison, I. D. Reid, N. D. Molton, and O. Stasse, “Monoslam:
Real-time single camera slam,” IEEE Transactions on pattern analysis
and machine intelligence, vol. 29, no. 6, 2007.

[7] J. Gutman, M. Fukuchi, and M. Fujita, “Real-time path planning for
humanoid robot navigation,” in Proceedings of the International Joint
Conference on Artificial Intelligence, 2005, pp. 1232–1238.

[8] T. Sugihara, Y. Nakamura, and H. Inoue, “Realtime humanoid motion
generation through zmp manipulation based on inverted pendulum
control,” in Proceedings of the IEEE International Conference on
Robotics and Automation, 2002.

[9] M. Toshihiro, H. Masanori, and Y. Shin’Ichi, “Development of laser
area sensor by measuring laser pulse reflecting time,” Nippon Robotto
Gakkai Gakujutsu Koenkai Yokoshu, vol. 24, 2006.

[10] A. Eliazar and R. Parr, “Dp-slam: Fast, robust simultanious localization
and mapping without predetermined landmarks,” in Proceeding of the
IJCAI 2003, 2003.

[11] ——, “Dp-slam 2.0,” 2006.
[12] H. Durrant-Whyte and T. Bailey, “Simultaneous localisation and map-

ping (slam): Part i the essential algorithms,” Robotics and Automation
Magazine, vol. June, 2006.

[13] S. Thrun, D. Fox, W. Burgard, and F. Dellaert, “Robust monte carlo
localization for mobile robots,” Artificial intelligence, 2001.

[14] M. Kopicki, “Monte carlo localisation for mobile robots,” Master’s
thesis, University of Birmingham, School of Computer Science, 2004.

[15] A. Eliazar and R. Parr, “Learning probabilistic motion models for
mobile robots,” in proceedings of the International Conference on
Machine Learning, 2004.

[16] D. Fox, W. Burgard, and S. Thrun, “Markov localization for mobile
robots in dynamic environments,” Journal of artificial intelligence
research, vol. 11, pp. 391–427, 1999.

[17] H. Choset, K. M. Lynch, S. Hutchinson, G. Kantor, W. Burgard,
L. E. Kavraki, and S. Thrun, Principles of Robot Motion: Theory,
Algorithms, and Implementations. The MIT Press, 2005.


