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Abstract--we present in this work a cooperative control
paradigm for the autonomous navigation of a mobile robot
and demonstrate that the cooperative controller learns
faster and better than a centralized one. Behaviors emerge
from the neuro-evolved controller, in order to achieve a
designed task and without been defined at design stage. In
our proposal, a robotic agent is divided into sub-agents,
each one controlling one sensor or actuator element of the
robot. Meanwhile the sub-agent learns to handle the
element, it also learns to cooperate with the other ones.
The emergence of behaviors happens when the co-
evolution of several sub-agents embodied into the single
robotic agent stabilizes. A distributed version of the ESP
neuro-evolving algorithm is used for the evolution of the
overall distributed controller.

Index Terms--autonomous robots, agents, co-evolution,
neural networks

I. INTRODUCTION

In the field of autonomousrobots,threemain control
techniquesareused:the hierarchicalcontrol technique,
wherea mainbraingeneratesa mentalrepresentationof
the spaceand usesit to guide the robot, the behavior
basedtechnique,wheredifferent behaviorsare defined
and they control the generalrobot behavior, and the
hybrid control approach,which tries to use the bestof
the two previous control techniques [17].

Althoughthe hybrid control type is a very promising
technique,at present,is the behaviorbasedcontrol the
most successfulone. It consistson defining several
behaviors required for the robot job, organized in
different layers. Interactionbetweenlayers is allowed
only from top to bottom, and behavior conflict is a
common problem not completely and satisfactorily
solvedyet [14][16][11]. A commonimplementationof
those principles is the one found in the subsumption
architecture[15]. A way to avoid those conflicts and
even the necessity of creation and definition of
behaviors is presented in this paper. Initially, no
behaviorsare defined,just the final task to achieve(in
theform of a fitnessfunction).All neededbehaviorsfor
the completionof the task will be learnt by the robot
(will emerge when required) by means of a
reinforcement learning algorithm and its associated
fitness function.

Similar resultshave beenreportedby Floreanoand
others[2][3] wherea real robot wascapableof emerge
an avoid obstacle behaviorand evena search for food
one.Though,the main differencebetweenthe methods
of Floreano and ours is the type of controller evolved.

We have taken as point of departure the idea
presentedby Minsky [12] wheresocietiesof sub-agents
cooperateto control a singleagent.In this papera robot
is seenas an agentcomposedby severalunits called
sub-agents. Each sub-agent is in charge of one

sensor/actuatorunit of the robotic agent and it is
implementedby a neuralnetwork.Sub-agentswill learn
to cooperateby communicatingwith theothers,in order
to accomplish the agent task. While learning to
cooperate,necessarybehaviorsfor the global task will
emerge without been specified.

Learningtherequiredrobotcontrollercanbedoneby
severalmethods.Onedemonstratedsuccessfulis neuro-
control, it is, the use of neural networks to learn to
implement the control policy.

Neuro-control learning can be implementedusing
supervised training or neuro-evolution. While
supervisedlearningusesaseriesof examplesto train the
networksby methodssuch as backpropagation,neuro-
evolution uses genetics algorithms to evolve the
requiredneuralnets.The advantageof neuro-evolution
oversupervisedlearningis that it doesn'tneedstraining
examplesto acquire the control knowledge.Neuro-
evolutionwill alsoallow therobot to learnanyrequired
task to completethe job, without beenspecifiedbefore
hand. 

Due to the necessityof controlling multiple sub-
agentsand to allow cooperationbetweenthem, a co-
evolutionmethodto obtaina propercontrol policy will
be required.Co-evolutionis a neuro-evolutionmethod
for the evolutionof different netswith different rolesin
a commontask.Theco-evolutionalgorithmusedhereis
a version of the Enforced SubPopulations algorithm
(ESP [5],[6]) with some modifications to obtain a
distributed controller.

This paper is distributed as follows: section II
describes the architecture taken. Then, section III
describesthe neuro-evolution method used, with
special interest in the distributed controller approach.
The paper continues with section IV, describing
different implementationsof theESPalgorithminsidea
robot simulator and the results obtainedwith several
experiments.Futurework and conclusionsare exposed
in sections V and VI.

II. THE ARCHITECTURE

The robotic agent used here is decomposedin a
groupof sub-agents. Eachsub-agentis in chargeof one
of thesensor/actuatorunits of the robot,andlearnshow
to use that unit at the sametime that learns how to
cooperatewith othersub-agents.It is, sub-agentsdo not
learn in a standalonemanner but in a cooperation
environment.It is saidthattheylearnhow to usesensors
and actuators for a common good.

Communication betweensub-agentsbecomesa very
importantfeaturein this implementation[21]. It allows
sub-agentsto sendinformationto eachother in orderto
correctly coordinate. During the training phase, the
information sent betweensub-agentsis used to learn



coordination. Whentrainingis finished,sub-agentshave
learn how to treat information about the stateof other
sub-agentsto coordinatewith them, and they will use
communication to maintain that coordination.
Furthermore,communicationgivesreactioncapabilities
in front of unexpectedsituationsto the robotic agent,as
showed in [1].

On the design presented here, communication
consistsof sendingto the other sub-agentsinformation
about the next step that a sub-agentwill take. A total
communication between all the agents has been
implementedhere through a communicationnetwork
which connects all sub-agents between them (fig. 1).

Similar architectureshavesuccessfullybeenapplied
in realtimecontrolsystems,like for examplethecontrol
of two building elevators,or warehousemanagement,
where a complex communication system including
contracts and requests,was required for a proper
collaboration of the different agents [7][8]. 

III. CO-EVOLUTION OF SUB-AGENTS

A. Definitions

To teach the agent how to behavein his world a
training mechanismis requiredand neuro-evolution is
theselectedmethod.Neuro-evolutionis concernedwith
theuseof geneticalgorithmsto evolveneuralnetworks.
Neuro-evolutiongeneratesa control policy evolving the
required knowledgethrough experience,including all
thenecessarybehaviorsto meetthespecificdemandsof
the domain [5]. This meansthat, if a following-wall
behavior is necessaryfor the agent, then the neuro-
evolution algorithm will evolve networks that are
capableof performingthat way [4]. So, an agentusing
this method will be able to learn behaviors,as for
exampleavoiding obstacles,without telling the agent
about it, and without coding it inside the agent by hand.

When it is necessaryto evolve different nets for
different roles in a commontask, then a co-evolution
algorithm is required [1]. This is, evolve a group of
agents in order to show them how to cooperateto
achievea commongoal, wheneveryagenthasits own
and different vision of the whole system.

There are two types of co-evolution methods:
competitive co-evolution, wheretherole of eachagentis
againstthe role of the otheragents(what an agentloses
another agent wins); and cooperative co-evolution,
whereagentssharerewardsand penaltiesof successes

andfailures.The last type will be the oneusedfor this
problem since each subpart is evolved on its own
populationand interactsandcooperateswith the others
to solve the problem,contributing its best to the final
solution.

To score the evolved neural network a fitness
function is created.Once a neural network has been
evolved,it must be testedon the domainto seehow it
performs.The result of this test is given by the fitness
function, and sayshow good or bad is the presentnet.
The score will guide the evolution in one way or
another.

The fitnessfunction hasto be calculated(and often,
readjusted)experimentally. It mathematicallydefines
the global behavior required for the robot.

B. The ESP co-evolution algorithm

Thereexistsseveralco-evolutionalgorithms.Theone
used here is the ESP algorithm.

ESP stands for Enforced SubPopulations.It is a
neuro-evolutionmethod to evolve sub-populationsof
neurons forming a global neural network. In this
process,groups of single neuronsare created(called
sub-populations). A neuronis selectedfrom eachsub-
populationto form a hiddenlayerunit of a globalneural
network. This neural network is evaluated on the
problem(for example,the Predator-Preydomainin fig.
2), been the fitness passedback to the participating
neurons.

The fitness is an evaluationscore of the neuron's
performanceinside the global ANN. Usually all the
participating neurons receive the same fitness.

Every neuron inside one of the groups of sub-
populationsencodeswith real values the state of the
connectionsof suchneuronwithin theglobalANN. The
informationcodedon everyneuronis calledthegenome
and it is the information that is evolvedby the genetic
algorithms.

The ESP algorithm implementedhere follows the
description given in [20], including delta-coding to
prevent premature convergence [6].

C. Multi-agent ESP architecture 

ESP can be used to evolve the neural network to
control more than one agent. In fig. 2, ESPis usedto
generatea singlecontroller for 4 different agentsin the
Predator-Preydomain. There exists a neural network
calledthe Global NeuralNetwork which controlsthe 4

Fig. 1. A robotic agent with four sub-agents

Sensor X 
Sub-Agent

Motor L 
Sub-Agent

Sensor Y 
Sub-Agent

Motor R 
Sub-Agent

Robotic Agent

Communication 
Network

Fig. 2. Multi-agent ESP with central
controller approach

Neuron Subpopulation Global Neural Network

1 2 3

4

Fitness

Predator-Prey domain



agents,it is, the outputsof the net encodein someway
what each agent must do at next time-step.  

The situation in fig. 2 is said to have a central-
controller approach. However, an autonomous-
controller or distributed-controller approach is also
possible.In the distributed-controllercase,every agent
is controlledby its own neuralnetwork (fig. 3). It has
been demonstratedfor the predator-preygame that
evolving cooperative distributed controllers is more
effective than evolving a central controller [1]. In this
paperwe test if this resultcanbe appliedto the control
of an autonomous robot, composed by several
cooperativesub-controllersinsteadof one big central
controller (fig. 3).

During co-evolution,the netsof all sub-agentsmust
havea rewardprovidedby the fitnessfunction. In [19]
Balch showsthat rewarding the whole team with the
same fitness produces cooperation between agents,
while rewardingeachagentwith its own fitnessvalue
inducesmorecompetitive behavior (becauseeveryagent
tries to maximize its own reward without paying
attention to the group'sgoal). Since the experiments
tried to achievea cooperationbetweensub-agentsto
successfullycontrol the robot behavior,all sub-agents
were rewarded with the same fitness value.

IV. EXPERIMENTS

The experimentsconsistedof a seriesof computer
simulationsimplementedin Scilab and C++. The C++
code is a modificationof animplementationof theESP
algorithm by the UTCS Neural Nets ResearchGroup
[13]. The original UTCS codewas createdto solve the
pole-balancing problem with a central controller
approach,so the modifications implementedthe robot
control problem with a distributed control.

To see the results of the nets in a visual way, a
simulator of a robot and its environmentwas created
usingScilab[18]. TheScilabcodetakesthe final neural
netsgeneratedby the ESPalgorithm and usesthem as
the control of a simulated robot, showing the behavior of
the robot on the screen.

A. Description of the physical platform

The goal is to obtain an autonomousrobot able to
find an object on his spaceand then start orbiting
aroundtheobject in an endlessloop. This behaviorwill
have to emergeby making cooperatefour sub-agents
inside the robot. All the experimentscorrespondto
simulations into a computer, since no real robot has been
used yet (work in progress).

The robot used for the experimentsconsistsof a
squaredplatform where two infrared sensorsand two
motorsareattached.Threewheelscontrol themovement
of the robot: two wheels at the bottom, controlled by one
motor eachone, and a free wheel at the front, which
gives stability but no control.

Sensorsemulatethe behaviorof infraredsensorsand
are placed at the upper-left corner of the robot, one
pointingto thefront andanotherpointingto theleft. The
first sensormeasuresthedistancebetweenthe robotand
an object in front of him. The secondonemeasuresthe
distanceof the left sideof the robotandanobjectat his
left. So, they will be called the Y sensorand the X

sensor respectively.
Sensorshave been modeled to be able to detect

objectsfrom a rangebetween20 and3 cm. Thingsout
of that rangeare not detected,so it is possiblefor the
robotto bein front of anobjectandnot detectit because
of beentoo close.The detectionvaluesof the sensors
havebeenquantizedin order to keepthe whole system
simpler. It will be considered that an object is:

� FAR from therobot,whendistanceis greaterthan20
cm.

� HALF distancefrom the robot, when distanceis
between 20 and 10 cm.

� CLOSE to the robot, when distanceis between10
and 6 cm.

� VERY-CLOSE to the robot, when distance is
between 6 and 3 cm.
Motors, together with the two main wheels, are

placedat both lower cornersof therobot.Their rangeof
velocities has been also quantized,only allowing 4
different values:

� FULL FORWARD
� HALF FORWARD
� STOP
� HALF BACKWARDS

Physicsof the movementof the robot was emulated
by using a correspondencetable; it is, basedon the
measurementsof the movementsof a real robot,a table
wasconstructed,specifyingthe translationand rotation
amount that the robot would suffer when a specified
voltage were supplied to the motors. The table was
basedon Rasmunsenwork [9]. This included a small
biason motorvaluesdueto imperfections,but no noisy
effects were taken into account.

B. Description of the software platform

In this case4 different sub-agentsare required to
representthe whole system(onefor eachIR sensorand
onefor eachmotor).Eachsub-agentis implementedby
a feed-forwardartificial neural network with sigmoid

Fig. 3. An autonomous robot controlled by four sub-
agents
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activation function and one hidden layer with 12
neurons.

Communication between sub-agents is performed by
connecting the outputs of the neural networks to the
inputs of the other nets (including itself). That is, neither
special language nor protocol has been designed for the
communication between sub-agents, just a plain
communication of the decision taken by the nets. Since
only four agents are required, all the nets have four
inputs: one for the output of the net controlling sensor
X, one for the output of the net controlling sensor Y, one
for the output of the of net controlling the left motor (L)
and one for the output of the net controlling the right
motor (R).

All the nets only have one output neuron, encoding
the value of the input between 0 and 1. For both motors
and sensors, the outputs of their nets are quantized. The
quantization of the values implies that even though the
outputs of the nets can produce any value between zero
and one, only a few values are allowed as entries to the
input neurons. This quantization makes the training
faster and the whole system simpler.

The desired behavior for the robot is the following:
the robot will be placed randomly in some free point of
the space. That space contains a square object in the
middle. First, the robot will have to look for the object
using a random search algorithm. Once the robot finds
the object he will start orbiting around it forever at a
CLOSE distance (between 10 and 6 cm).

In order to avoid an endless loop when no object is at
a certain detectable distance of the robot, a random
search routine was created. It happens that, when no
object is close enough to the robot to be detected, the
robot generates a movement in a loop manner. Even that
this loop can have different shapes, if an object can not
be detected in any of the positions of the robot
trajectory, the robot would remain forever doing the
loop without finding the object. To avoid that behavior,
a random search routine was activated every time the
sensors sensed nothing, bypassing the orders given by
the controller formed by the nets.

Two types of experiments were done: one first
experiment using ESP with a central controller and a
second one using the distributed controller version of
the ESP.

Some values required for the algorithm are presented
bellow:

N. subpopulations 12 for distributed

48 for central

Neurons per population 40

Mutation Rate 0.4

N. trials per neuron 10

Stagnation after 20 evaluations

N. Steps 300

Table 1. Table of values required for ESP evolution

C. Simulation with a central controller approach

In this case, the UTCS software was used to solve the
robot control problem changing the program from its

original role (the pole-balancing problem). The UTCS
code used ESP to evolve a central controller, so the first
attempt was to see if it was possible to evolve a central
controller capable of maintaining the required behavior.

For the central-controller approach, only one neural
network was required (the central controller). The net
obtained the (quantized) data from motors and sensors
and generated the required responses for the motors (no
output were required for sensors since they are passive
elements). Fig. 4 shows the net used, been the hidden
neurons generated using the ESP algorithm.

The number of subpopulations equals the number of
hidden neurons, the neurons per population parameter
indicates the number of neurons available for use in
each subpopulation, the mutation rate expresses the rate
at which neurons are mutated, the number of trials per
neuron says the mean number of times every neuron of
every subpopulation must be tested before a
recombination is started, and the stagnation parameter
defines the number of trials without improvement before
delta-coding is invoked. The number of steps indicates
the amount of step times that an evaluation is run.

In order to obtain the required behavior the following
fitness function was defined:

F �
�

1 when Sx � CLOSE � Sy � FAR � VLeftRight � 0
0 elsewhere

1

This function rewards the neurons only when the
robot is running with both wheels, detecting an object on
his left at CLOSE distance, and detecting nothing in
front of him. 

The required behavior was obtained after an average
of 140 generations, been the maximum fitness obtained
of 239 out of 300 steps.

Average number of
generations required 140

Max. Fitness 239

Table 2. Results for the central-controller evolution

Another interesting result is that the evolution was
left running for several hours until generation 1500 was
reached, but fitness never improved, having its
maximum at 239.

D. Simulation with a cooperative controller approach

Fig. 4. ANN for the central-controller
approach
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Now, the UTCS softwarewas modified to haveone
neural network like that in fig. 5 for every sub-agent,
implementingin this way thecontrol structureshownin
fig. 3. All networkswereevolvedat the sametime. By
doing this, a distributed controller was obtained,and
using parametersof table 1, and the same fitness
function of the secondexperiment,the samebehavior
evolved after 78 generations. 

Average number of
generations required 78

Max. Fitness 237

Table 3. Results for the cooperative-controller evolution

Significant differences with the central-control
experimentcan be observed:first, the averagenumber
of generationsrequiredto obtainthesamebehaviorwas
drastically reduced.Secondly, when left running the
evolution, the maximal fitnessobtainedreachedvalues
of about 260.

Both resultsshowthat a cooperative(or distributed)
controller for a robot can learn fasterand betterthan a
central one, as was statedin [1] for the predator-prey
game.

E. Additional results

It must be said that, due to the sharpnessof the
centralobjectthattherobotmustdetectandorbit, andto
the fact that the neural nets used are simple feed-forward
nets, the robot looses contact sometimesduring his
orbiting. It is comprehensivethat this happensbecause
of the existenceof the randomsearchalgorithm.When
the robot is following the object and it suddenlyends,
the robot sensesnothing.He suddenlygoesfrom being
on the track to been completely lost. This situation
activatestherandomsearchroutine,makinghim to sniff
for the traceof the object. The samesniffing behavior
was observedin all the experimentsand it should be
avoidedby using recurrentneuralnets insteadof plain
feed-forward nets.

As an additional result, the robot was allowed to
detectthe walls of the environment.The centerobject
wasalsoput very closeto the wall, so the robot would
detectthe wall whenorbiting aroundthe object. In the
simulation, the robot reachedthe point where he was
orbiting aroundthe centralobjectbut detectedthewall.
At that point, the robot switched his focus from the

centralobjectto thewall, andstartedto follow the wall
clockwise.

This result is important when switching from the
simulationto a realrobot,becauseit will allow therobot
to orbit around any shapeobject and also to avoid
obstacles(even that the avoid obstacle behavior was
never mentioned).

V. FUTURE WORK

Further work is planned based on the robot
architecture explained. This includes:
1. Implementationof the neural networks on a real

robot: this work is in progress,with a real robot
containingtwo ultrasonicsensors,two light sensors,
one line detector, one battery detector and two
wheels. Eight sub-agents are then required.

2. Scaleup width: moresensorsandactuators.It needs
to be testedif this architecturecanstill work where
large arrays of sensors and actuators are necessary. 

3. Scale up height: more sub-agent layers. It needs to be
tested how different layers of sub-agents can
cooperateandcoordinate,andalsohow to makeuse
of lower layers.

4. Apply this architectureto other control processes,
like domotics.It looks like this kind of structurecan
beappliedto multiple domains[1][4][7] [8], not only
controlling autonomous robots, but any system
requiring control.

VI. CONCLUSIONS

It has been shown in this work the possibility of
makingcooperateseveralsub-agentsfor thecontrolof a
small mobile robot, in a first stageat a small scaleby
defining a multi-agent version of the standard co-
evolution algorithm ESP.Advantagesof this approach
are:it is not necessaryto specifywhatkind of behaviors
are requiredfor a robot to perform a job, sinceall the
required behaviors will emerge by themselves;the
distributed controller learns faster and better than the
distributed controller (in accordance with [1]);
furthermore,it is expectedthat the distributedcontrol
will allow for morescalability than the centralcontrol.
This point will be confirmed with further work.
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