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Abstract:A distributedandscalablearchitecturefor thecontrolof an autonomousrobot is presentedin this
work. In our proposalawholeroboticagentis dividedinto sub-agents.Everysub-agentis codedinto a very
simpleneuralnetwork,andcontrolsonesensor/actuatorelementof therobot.Sub-agentslearnby evolution
how to handle their sensor/actuatorand how to cooperatewith the rest of sub-agents.Emergenceof
behaviorshappenswhen the co-evolutionof severalsub-agentsembodiedinto the single robotic agentis
produced.It will be demonstratedthat the proposeddistributedcontroller learnsfasterand better than a
neuro-evolved central controller.
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1. INTRODUCTION

At present,the design of autonomousrobots can be
faced in several ways being evolutive robotics a
promising one (Nolfi and Floreano, 2000). Using
evolutive robotics, Floreanoand others (Floreanoand
Mondada, 1996; Floreano and Urzelai, 1997)
demonstratedthat a behavior based robot could be
evolvedby a geneticlearningalgorithmjust specifyinga
simple fitness function, without direct encodingof the
required behaviorsfor the task at hands.By using a
centralizedcontroller,implementedby aneuralnetwork,
their real robot was able to move around a circuit
avoidingobstaclesandfinding food resources.Avoiding
obstacles, timing and looking for food behaviors
emergedfrom the maximizationof a fitness function,
but those were never explicitly coded into the robot
control law. A similar work is reportedby Moriarty and
Miikkulainen (1996), where the ESP evolutionary
algorithmis usedto evolvethecontrollerof a robotarm,
and by Steels (1994) who showed emergent
functionality through on-line evolution.

Later, Han Yong and Miikkulainen (2001)showedthat
different cooperativebehaviorsbetweenseveralagents
could appear in a predator-prey domain when a
distributedcontroller is evolved in a cooperativeway.
They evolveda groupof agents,eachonewith its own
controller, making them learn how to reach the prey,
resulting in a distributed controller (as opposite to a
centralized controller). Results confirmed that the
distributedversion is more powerful and learnsfaster
and better than the centralized one.

Taking all thoseresultsaspoint of departure,andgoing
in the direction suggestedby Minsky (1988) about the
society of mind, we are concerned to obtain a
cooperative controller for an autonomousrobot, by

designinga robot composedby severalgeneralcontrol
units or information processingunits called Intelligent
Hardware Elements. We will createa group of sub-
agentsinside a single global agentand they will learn
how to cooperateto correctly control the autonomous
robot.

Each sub-agentwill be representedby an Intelligent
Hardware Unit. These elementsembody a sensoror
actuatoranda smallprocessingunit, actingthewholeas
a sub-agent inside any control system, learning to
cooperatewith other sub-agentsto achievea common
goal. In this paper we show how an autonomous
cooperativecontrol systemfor a robot is possibleusing
such normalized elements,and how its performance
improves that of a  centralized controller.

For the evolution of the controllersit will be usedthe
co-evolutionalgorithmnamedEnforcedSubPopulations
(ESP (Gómez and Miikkulainen, 1997; Gómez and
Mikkulainen, 1999)). Any other neuro-evolution
algorithm could be used to obtain the controllers,
however,in practice,ESPhasspecificallydemonstrated
be efficient when evolving such kind of controllers
(Gómez and Mikkulainen, 1999).

This paperis distributedasfollows: section2 describes
in a preciseway theproposedarchitecture.In section3,
some experiments with centralized and distributed
controllers are evaluated and analyzed. Discussion of the
resultsis providedat section4, and finally conclusions
are displayed at section 5.

2. GENERAL METHOD

The main purpose of this work is to show how a
distributedor cooperativecontroller for an autonomous



robot is possible in order to accomplish specific tasks,
and, moreover, that this controller performs better than a
centralized one. The centralized controller is composed
by only one artificial neural network with all the
required inputs and outputs to control all sensors and
actuators. The distributed controller will consists of
several artificial neural networks, one for each
sensor/actuator, interconnected through a
communication network (Fig. 1).

2.1.The Intelligent Hardware Unit

In order to design the cooperative controller we are
concerned about a general purpose hardware control
element able to sense or act into the environment, and to
process information in a simple way. We call this unit
an intelligent hardware unit (Fig. 2). The unit is
composed of two different parts: the first one is a sensor
or actuator hardware element, depending on the task of
the unit, to sense the environment or to act on it. The
second part is the processing element. 

The sensor/actuator part can be any type of
sensor/actuator hardware element and its output/input is
directly connected to the processing unit. Its role is to
interface with the real world sensing something from it
or actuating on it. The processing part of the unit is a
simple element of calculus that interfaces with the
sensor/actuator and processes its output/input in a
simple way. It also has the ability to connect with the
other processing units. At practice, it could be any type
of control algorithm implemented in a simple micro-
controller. The processing algorithm could be a neural
network, a data processing algorithm or anything
similar. Its main role is to process the data coming from
the sensor or going to the actuator in order to obtain the
desired global behavior. A second role of the processing
unit is to interface with other intelligent hardware units.
To do this, the element is also capable of sending and

receiving information to/from other elements through a
communication network.

In our distributed version of the robot controller we use
four of those units, two for the control of two wheels
(actuators) and other two for the control of two IR
distance detectors (sensors).

2.2.The robot

The robot used for the experiments is a software
simulation of a squared platform where two infrared
sensors and two motors are attached. Three wheels
control the movement of the robot: two wheels at the
bottom, controlled by one motor each one, and a free
wheel at the front, which gives stability but no control. 

Sensors are also simulated. They imitate the behavior of
infrared sensors and are placed at the upper-left corner
of the robot, one pointing to the front and another
pointing to the left. The first sensor measures the
distance between the robot and an object in the front.
The second one measures the distance of the left side of
the robot and an object at his left. Because of that, they
will be called the Y sensor and the X sensor
respectively.

Sensors have been modeled to be able to detect objects
from a range between 3 and 20 cm. Things out of that
range are not detected, so it is possible for the robot to
be in front of an object and not detect it because of been
too close. The detection values of the sensors have been
quantized allowing 4 possible levels (far, medium, close
and very-close) in order to keep the whole system
simpler. Motors, together with the two main wheels, are
placed at both lower corners of the robot. Their range of
velocities has been also quantized, only allowing 4
different levels (full forward, half forward, stopped and
half backwards). In the centralized controller, motors
and sensors are all controlled by one net, but in the
distributed version, motors and sensors have each one
their controller which are implemented using intelligent
hardware units.

Physics of the robot movement was  emulated by using a
correspondence table, i.e., a table of values was
constructed based on the measurements of the
movements of a real robot, by specifying the translation
and rotation amount that the robot would suffer when a
specified voltage were supplied to the motors. The table
was based on Rasmunsen (2000) work. A small bias on
motor values due to imperfections was included, but no
noisy effects were taken into account.

2.3.The sensor sub-agent

Sensor sub-agents require special attention. In other
robot designs, sensors deliver the sensed values to a
controller which decides what to do with them. A post
processing of the sensed value could be applied, been
most of the times a processing algorithm determined by
the designer of the robot.

Fig. 1. Schematics of a robotic agent
composed of four sub-agents, when
a distributed controller is used.

Sensor X 
Sub-Agent

Motor L 
Sub-Agent

Sensor Y 
Sub-Agent

Motor R 
Sub-Agent

Robotic Agent

Communication 
Network

Fig. 2. Schematics of the Intelligent Hardware Unit

Sensor/Actuator Processing UnitReal World

Intelligent Hardware Unit
Communications 

Network



However, in our design, the sensor (in fact, the
intelligent hardwareunit) itself decideswhich kind of
processingfor the receivedsignal from the hardware
sensoris required.The intelligentsensorunit decidesif
processingis necessaryandof which kind, dependingon
a numberof factors:what other sub-agentsare on, the
type of used neural net, the sensorfeatures,and the
currentvaluesensed.Processingis implementedon the
neural network of the intelligent hardware unit that
conformsthesensor,andwill belearnedby it duringco-
evolution.

2.4.The evolutionary procedure

When it is necessaryto evolve different nets for
different roles in a commontask, then a co-evolution
algorithm is required (Han yong and Miikkulainen,
2001). This is, to evolvea group of agentsin order to
showthemhow to cooperate to achievea commongoal,
wheneveryagenthasits own anddifferentvision of the
whole system.

Co-evolution generatesa control policy evolving the
required knowledgethrough experience,including all
thenecessarybehaviorsto meetthespecificdemandsof
the domain(Gómezand Miikkulainen, 1996;). So, if a
following-wall behavioris necessaryfor the agent,then
the evolution algorithm will evolve networks that are
capable of performing that way (Moriarty and
Miikkulainen,1996). An agentusingthis methodwill be
able to learn behaviors, as for example avoiding
obstacles, without coding them inside the agent by hand.

The method selectedto evolve the nets is the ESP
(Enforced SubPopulations) reinforcement learning
algorithm.It presentsseveraladvantagessuchas:it is an
unsupervisedmethodwith no needof trainingexamples,
it allows co-evolution (evolve different agents with
different roles and a commongoal) and it is specially
designedto obtaina distributedcontroller.It alsoworks
perfectly when cooperation between agents (since
cooperative co-evolutionwill berequired(Balch,1997),
this is, all sub-agentssharingrewardsandpenaltiesfor
successesandfailures).TheESPalgorithmimplemented
here follows (Aedula and Dagli, 2002) description,
including delta-coding to prevent premature
convergence (Gómez and Miikkulainen, 1999).

3. EXPERIMENTS

Consideredexperimentsconsistof a seriesof computer
simulationsimplementedin Scilab and C++. The C++
code is a modificationof animplementationof theESP
algorithm by the UTCS Neural Nets ResearchGroup
(UTCS, 2002).The original UTCS codewascreatedto
solve the pole-balancing problem with a central
controllerapproach,so themodificationsimplementthe
robotcontrolproblemwith a distributedcontrol.Results
of thenetscanbe obtainedin a visualway by meansof
the design of a robot simulator and its environment
using Scilab (Scilab, 2003).The Scilab code takesthe
final  neural  nets  generated  by  the  ESP algorithm and

 Table 1. Required values for the ESP algorithm
evolution

N. subpopulations 12 for distributed

48 for central

Neurons per population 40

Mutation Rate 0.4

N. trials per neuron 10

Stagnation after 20 evaluations

N. Steps 300

uses them as the control of a robot, showing the
behavior of the robot on the screen.

The goal task is to obtainan autonomousrobot ableto
find an object on his spaceand then orbit aroundthe
object in an endlessloop. This behaviorwill have to
emergeby the cooperationof the four sub-agentsinside
the robot. To obtain that behaviorthe following fitness
function was defined:

F �
�

1 when Sx � CLOSE � Sy � FAR � VLeftRight � 0

0 elsewhere
1

This function rewards the neuronsonly when the
robot is running with both wheels, detecting an object on
his 'left' at 'close'distance,anddetectingnothingin front
of him. 

All theexperimentscorrespondto computersimulations,
sinceno real robot has beenusedyet, it is a work in
progress.Some values required for the algorithm are
presentedon Table 1. On that table, the number of
subpopulationsis equal to the number of hidden
neurons;theneuronsper populationparameterindicates
the number of neurons available for use on each
subpopulation;the mutation rate expressesthe rate at
which neuronsaremutated;the numberof trials neuron
informs about the mean number of times that every
neuron of every subpopulationmust be testedbefore
recombinationis started;and the stagnationparameter
definesthenumberof trials without improvementbefore
delta-codingis invoked. The numberof stepsindicates
the amountof steptimes that an evaluationis run and
equals the maximum fitness reachable. Every
experimentwasrun10 times,andtheaverageresultsare
shown on tables 2 and 3.

3.1. Centralized controller

The UTCS software was used to solve the robot
centralizedcontrol problemby modifying the program
from its original role (the pole-balancingproblem).The
original UTCS code used ESP to evolve a central
controller, so the first attempt was to check the
possibility to evolvea centralcontrollerable to exhibit
the required behavior.

For the central-controllerapproach,only one artificial
neuralnetwork was required.The learnednet, obtains
the quantizeddata from the motors and sensorsand
generates the required responses for the motors (no



Table   2  . Results for the central-controller evolution  

Average number of
generations required 140

Max. Fitness 239

output is required for sensors since they are passive
elements).  Fig. 3  shows  the  net  employed,  where  the
hidden neurons are generated by using the ESP
algorithm.

The required behavior was obtained after an average of
140 generations, being the average maximum fitness
obtained of 239 out of 300 steps. When evolution was
run for several hours, until generation 1500 was reached,
fitness maximum did not improved.

3.2. Distributed controller

The robotic agent is decomposed into a group of sub-
agents. Each sub-agent is in charge of one of the
sensor/actuator units of the robot and is implemented
using one Intelligent Hardware Unit (however,
everything is emulated by a software program). The
processing part of the Intelligent Hardware Unit learns
how to use its hardware part (the sensor or actuator) at
the same time that learns how to cooperate with other
sub-agents, i.e., sub-agents do not learn in a standalone
manner but in a cooperation environment.

Now, the UTCS software was modified to have one
artificial neural network like that in fig. 5 for every sub-
agent, implementing in this way the control structure
shown in fig. 3. All the neural networks were evolved at
the same time. By doing this, a distributed controller
was obtained. When the same parameters than those of
table 1 are used, and the same fitness function of the
second experiment, the same behavior is evolved after
78 generations. 

Significant differences respect the central-control
experiment can be observed: first, the average number
of generations required to obtain the same behavior was
drastically reduced. Secondly, when evolution is left run
some more generations, the maximal fitness obtained 

Table   3  . Results for the cooperative-controller evolution  

Average number of
generations required 78

Max. Fitness 254

reached values of about 260 out of 300.

Comparing results can be seen that a cooperative (or
distributed) controller for a robot can learn faster and
better than a central one, confirming the idea stated in
(Han yong and Miikkulainen, 2001) for the predator-
prey game.

3.3. The real job of sensor sub-agents

When using four sub-agents to control the robot, the
question about the necessity of using neural networks in
the sensors arises. Since its only job is to receive the
value from the sensor and deliver it to the rest of neural
networks, is it really necessary to use those networks in
such passive elements?. Is the neural network attached
to the sensors doing any job?. To answer those questions
we performed two more experiments.

In the first one, we created a distributed controller with
only two sub-agents, one controlling each motor.
Outputs from sensors X and Y were directly connected
to the neural networks of those actuators (no neural nets
were attached to those sensors). Results showed that the
ending robotic agent was able to have the required
behavior, but his fitness dropped down a little bit (an
average of 232 out of 300, against 254 out of 300 for the
four agents distributed controller). From that result, we
stated that sensor sub-agents are really doing some
helpful job, it is, they are leaning something that
improves the robot behavior.

In the second experiment, we tried to see if the learned
function of the neural nets of the sensor sub-agents was
always the same or was it affected (adapted) by the
nature of its associated sensor. To test this, we plotted
the function learned by sensor X network under two
different circumstances: 

Fig. 3. Artificial neural network that
implements the central controller of the
robot.
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Sensor X Sensor Y Motor L Motor R

Output Motor L Output Motor R

Fig. 4. Artificial neural network used for the
processing unit of each intelligent
hardware unit implementing a sub-agent
in the distributed controller.
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first one,showedon Fig. 5, showsthe function learned
by sensorX when Motor L and Motor R value 'half-
speed' and sensor Y senses nothing.
On the secondone,we modified thecodethat emulates
thesensorX andintroduceda modification,emulatinga
sensorfailure. Failure consistedon only allowing to
senseobjectsat 'close'and'very-close'distances(no 'far'
distancesallowed).After this modification,we evolved
the 4 sub-agentsagain,andplotted the resultingsensor
X network when Motor L and Motor R value 'half-
speed' and sensor Y senses nothing (Fig. 6).

Comparingboth figures, it can be seenthat nets are
learninghow to processthe input signal, and that this
processinghighly dependson the sensorbehavior.First
of all, figures5 and6 showthat thesub-agentsaredoing
a job and it is not only taking the value sensedand
sending it to the rest of nets. Second, this job depends on
the global situation. It would be possiblethen, to use
netson the sensorsable to adaptthemselvesto a noisy
environmentandlearnwhat kind of treatmentwould be
necessaryto take the most of the environment to
performthe task required.This will be confirmedwith
further work.

4. DISCUSSION

Resultson 3.1 and3.2 showthata distributedcontroller
performsbetterthata centralizedonewhenevaluatedon
thesametask.However,thereareno big argumentsthat

could justify the useof oneof themover the otherone,
becauseboth controllers were able to present the
required behaviors with just small differences in
performance. Nevertheless, the idea behind the
distributed controller is that of providing a universal
platform to be usedon any control system.Given its
modularity, the distributedcontroller presentedhere is
suitablefor usein any otherdomainrequiringcomplex
control and where multiple information from several
sensorsandactuatorsmustbe takeninto accountat the
sametime, like for examplethe control of a domotic
house(our europeanCicyt ACCUA projectis at present
dealing with this), and it looks like it will be more
capableto handle this situation when the number of
sensors and actuators increases(current job under
development). Given its distributed nature, our
controller should allow for a better scalability and a
more robust control systemin front of errors or even
malfunction of one of the Intelligent Hardware
Elements.Neverthelessthoseobjectivesare out of the
presentpaperbeenour main concernto show that the
distributedcontroller is a real alternative.Universality,
scalability and robustnessof this kind of distributed
controllers will be explored in future papers. 

Experimentson section3.3 demonstratethat the useof
sensor sub-agentsimprove the performance of the
controllerandallows to takethemaximumprofit of any
informationreceivedfrom a sensor.If a sensorbehaves
badly,only theneuralnetworksthattakethebestof that
faulty sensorwill evolve.This could leadto completely
ignoretheinformationsentby thebadsensor(if it is too
noisy) or just to pay attentionto determinedvalues.It
couldbe said that the sub-agentperformsan adaptation
betweenthe sensorand the robot brain, and the sub-
agent itself must find the best adaptation.

All thoseresultscould suggestthat a gooddirection to
moveon whendesigningthecontrolof a robotcouldbe
to only specifythearchitectureandtheconnections,and
let therobotfind his bestcontroller.Sensorandactuator
integrationwould be achievedduring evolution in the
way the robot thinks is best. Nothing would be hard
coded but the neuron connections and the fitness
function (that can be very unrestrictive to allow
uncountablebehaviors, as shown in (Floreano and
Mondada,1996)). Furtherexperimentswill needto be
done to confirm this point.

5. CONCLUSIONS

It hasbeenshownthat it is possibleto makecooperate
severalsub-agentsto control a small robot,at leastat a
small scale, by using co-evolution algorithm ESP.
Directly demonstratedadvantagesof this approachare
the automaticemergenceof required behaviorsand a
fasterlearningandbetterperformancethana centralized
controller. Also, introducing sub-agentson passive
sensorsimprovesthe resultsand allows the engineerto
forgetaboutthe problemsof processingand integration
of sensors values. Potential advantages include
scalability and robustness.

Fig. 5. Function learned by the X sensor network.
Even that the function depends on 4
variables, Y sensor, Left motor and Right
motor have been fixed, showing only the
dependence of the network output in front of
sensed X values.

Fig. 6. Function learned by the X sensor network
when the sensor has a malfunction. Same
conditions as in Fig.5 have been applied.



Further work is in progressto demonstratescalability
and direct application to real robots, and it will be
presented during the conference.
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