
Aibo Programming
An introduction to R-CODE and OPEN-R

IX-2004
by Ricardo A. Téllez

General Index

 Short introduction to the Aibo robot
 Setting the environment up
 Introduction to R-CODE
 Introduction to OPEN-R

Aibo Programming

SHORT INTRODUCTION TO THE
AIBO ROBOT

Aibo Description
 It is a robot dog

created by Sony
 Fully programmable
 Several models

already:
 Mutant
 ERS-110
 ERS-210
 ERS-220
 ERS-7

Aibo Description
 For the ERS-7:

 It has 18 DOF
 It has several sensors:

 Paw sensors (4)
 Distance sensors (3)
 Touch sensors (4)
 Color camera (1)
 Stereo micro (2)
 Accelerometers (3)

Aibo Description
 Aibo programs are

stored into memory
sticks (MS)

 MS are plugged into
Aibo to run the
program

 You can produce any
type of controller
program for Aibo:
neural controller,
behavior based, etc...

Aibo Description

 R-CODE
 It is a scripting

language
 Easy to use and to

generate behaviors
 No compilation

required
 Complete control of the

robot is not possible

 OPEN-R
 It is a C++ Software

Development Kit
 Difficult to understand

and to generate control
architectures

 C++ compilation
required

 Allows total control of
the robot

The programming environment

Aibo Description

 Remote Framework
 Visual C++ program

that runs on a PC
 The program connects

with Aibo
 Remote control the

robot

 Motion Editor (MEdit)
 Easy creation of

motions for Aibo

Additional tools (released by Sony)

Aibo Programming

SETTING THE ENVIRONMENT UP
- Installing the OPEN-R SDK on the PC (done)

- Installing the memory stick reader/writer (MS R/W)
- Installing the base system on a memory stick (MS)

- Setting up the wireless network
- Compiling a sample program

- Setting the FTP server

Setting the Environment Up
Installing the OPEN-R

SDK on the PC (done)
 For this course, this

task has been done by
the sysadmin

 Almost automatic
 More info in the Aibo

Quickstart Manual and
the Sony's Installation
Guide

Installing the MS
reader/writer
 Most of work done by

the sysadmin
 Plug the MS R/W
 Insert a MS on it
 Type on a console:

 mount /mnt/usb
 cd /mnt/usb

Setting the Environment Up
Installing the base system on a MS

 Select the type of environment (Basic, Wlan or
Wconsole)

 Select the memory protection type (memprot,
nomemprot)

 Copy the resulting OPEN-R directory to the memory
stick (cp -r OPEN-R /mnt/usb)

Setting the Environment Up
Setting up the wireless network: configuring a

wireless environment with Access Point (AP)
 Configuration of the AP done by sysadmin
 Configuration of the PC done by sysadmin
 Configuring the Aibo wireless card:

 Modify the OPEN-R\SYSTEM\CONF\WLANDFLT.TXT file
of the MS with following data:

HOSTNAME: AIBO
ETHER_IP: 147.83.60.20x
ETHER_NETMASK: 255.255.255.0
IP_GATEWAY:147.83.60.200
ESSID: ESAII-EPSEVG

WEPENABLE: 1
WEPKEY: *ESAIIEPSEVG*
APMODE: 2 (auto-mode)
CHANNEL: 3

Setting the Environment Up
Compiling a sample program: the HelloWord
 Go to the HelloWord program directory:

 cd sample_programs/common/HelloWord

 Compile the program
 make ; make install

 Transfer generated code to the MS
 cp -r sample_programs/common/HelloWord/MS/OPEN-R

 Insert the MS on Aibo and switch it on
 Telnet to the robot to see the result

 telnet 147.83.60.20x 59000

Setting the Environment Up
Setting the FTP server
 Compile the FTP program

 cd sample_programs/common/TinyFTPD ; make install

 Install the generated object on the MS
 cp TinyFTPD/MS/OPEN-R/MW/OBJS/TINYFTPD.BIN /

mnt/usb/OPEN-R/MW/OBJS/

 Install the password file
 cp TinyFTPD/MS/OPEN-R/MW/CONF/PASSWD /

mnt/usb/OPEN-R/MW/CONF
 Add line /OPEN-R/MW/OBJS/TINYFTPD.BIN to

 /OPEN-R/MW/ CONF/OBJECT.CFG

Aibo Programming

INTRODUCTION TO R-CODE

Introduction to R-CODE
 It is a scripting

language similar to
Basic

 Allows programming
complicated things
with a few commands

 An R-Code program is
a text file

 Can be created in any
operating system

 Example:
 :START

 CALL:1001

 DO

 WAIT:1

 IF:AU_Voice:=:1:THEN

 WAIT:1

 SWITCH:AU_Voice_ID

 CASE:1:CALL:1003

 CASE:6:CALL:1005

 CASE:ELSE:CALL:1007

 CALL:1001

 ENDIF

 WAIT:1000

Introduction to R-CODE
You can easily do:

 Put Aibo in SIT, STAND and SLEEP positions
 Make Aibo walk, turn around, move head, track ball
 Make Aibo find the ball, AIBOne and faces
 Make Aibo recognise verbal commands (53)
 Make Aibo execute contents (motions, LED, WAVs)
 Use your own motions, LEDs and WAVs
 Acquire distances to objects

Introduction to R-CODE
Running a R-Code program
 Prepare the memory stick with R-Code

 Copy Redist7/Eng/OPEN-R directory to empty MS
 Set the wireless network

 Configure the WLANCONF.TXT file
 Delete file /OPEN-R/APP/DATA/P/OWNER.TXT
 Create file /OPEN-R/APP/PC/AMS/NOAUTH.CFG

 Copy your R-Code program with name
R-CODE.R to /OPEN-R/APP/PC/AMS/

 Switch on Aibo

Introduction to R-CODE
Using the console
 Telnet to Aibo at port

21002
 telnet Aibo_IP 21002

 Send commands using
the console
 Ex: PLAY:ACTION:SIT

 Use EDIT, END and
RUN to send and
execute a new
program

 Use @DISS command
to close connection

Introduction to R-CODE
General considerations
 R-Code programs are scripts (text files)
 Commands are words separated by colons
 Ex: PLAY:ACTION:TURN:90
 R-Code is case sensitive. Use lower case for

user defined vars
 Only ASCII characters and underscores
 Use of 32 bits integers

Introduction to R-CODE

 To produce an R-Code program you use:
 commands, relational operators, system variables

and actions
 You can also use:

 Aibo recognised words, sounds and tones

Introduction to R-CODE
R-Code commands
 They implement different

functions like in a Basic
program

 Each line is a command
 They can be sent

individually through the
console

 Examples:
 ADD, FOR, IF, LET,

WAIT, GO, CALL,
RETURN

R-Code operators
 = Equals
 == is equal to
 <> not equal to
 < less than
 > greater than
 && AND
 || OR

Introduction to R-CODE
System variables
 Describe the status of

the robot
 Can be checked or set

to act consequently
 Examples:

 Face, Pink_Ball,
Pink_Ball_D,
AU_voice, Distance,
Head_ON

Aibo actions
 Actions can be played

by Aibo with command
PLAY:ACTION or
PLAY:MWCID

 Examples:
 SIT, LIE, KICK, TURN,

SEARCH,
TRACK_HEAD

Introduction to R-CODE
Recognised words
 Use the AU_Voice

variable to detect
recognition

 Use the AU_Voice_ID
variable to identify the
word said

Debugging
 Use the console to debug

your programs (EDIT,END
and RUN)

 Use VDUMP to display var
names:
 VDUMP:<var name>

 Use PRINT to display
comments:
 PRINT:<format>:<vars>

Aibo Programming

INTRODUCTION TO OPEN-R

Introduction to OPEN-R
OPEN-R program

A set of OPEN-R objects running concurrently that
communicate between each other.

Objects are like PROCESSES in Aibo's computer
Objects inherit from the base class OObject
Objects are composed of a set of internal states
They must have defined virtual functions DoInit,
DoStart, DoStop and DoDestroy
Ex: HelloWord
(change HelloWord to print a bye message)

Introduction to OPEN-R
Objects communicate through GATES by using
MESSAGE passing (allows coordination)

Object-1 Object-2

Outgoing gate

Outgoing gate

Incoming gate

Incoming gate

Messages

Gates are unidirectional. Two gates
required for bidirectional communication

Introduction to OPEN-R
Objects are composed of internal states. Transitions

between states are started by reception of messages
from other objects (event oriented programming)

MAS_ST
ART

MAS_ID
LE

Status
!=

monetSU
CCESS

Status
!=

monetSUC
CESS

1->
DoSta
rt()

The sender of the message is
called the subject. The
receiver is called the
observer

Messages can be of any type
of data.

The Assert_Ready (AR)
message indicates
readiness

Introduction to OPEN-R
How to implement an object (ex:ObjectComm)

 By inheriting from the base class OObject
 Create the virtual functions DoInit, DoStart,

DoStop and DoDestroy
 Define the states of the object
 Create the constructor
 Define the connections with other objects

(stub.cfg file)
 Create the class required procedures to send,

receive and process messages

Introduction to OPEN-R
DoInit procedure
 Called when object

loaded in memory
 Sets up gates and

registers observers
and subjects of the
object

 Use OPEN-R macros
to do the job

OStatus
SampleObserver::DoInit(const
OSystemEvent& event)
{
NEW_ALL_SUBJECT_AND_OBSERVER;
REGISTER_ALL_ENTRY;

SET_ALL_READY_AND_NOTIFY_ENTRY
;
return oSUCCESS;
}

Introduction to OPEN-R
DoStart procedure
 Called when DoInit

finished in all objects
 Sends AR message to

all observers
 May change from

IDLE to another state
 Use OPEN-R macros

to do the job

OStatus
SampleObserver::DoStart(const
OSystemEvent& event)
{
ENABLE_ALL_SUBJECT;

ASSERT_READY_TO_ALL_OBSERVER;
 return oSUCCESS;
}

Introduction to OPEN-R
DoStop procedure
 Called at shutdown of

the system
 Sends DR message to

all observers
 Changes to IDLE

state
 Use OPEN-R macros

to do the job

OStatus
SampleObserver::DoStop(const
OSystemEvent& event)
{
DISABLE_ALL_SUBJECT;

DEASSERT_READY_TO_ALL_
OBSERVER;
 return oSUCCESS;
}

Introduction to OPEN-R
DoDestroy procedure
 Called after DoStop

finished in all objects
 Deletes all objects
 Use OPEN-R macros

to do the job

OStatus
SampleObserver::DoDestroy(const
OSystemEvent& event)
{

DELETE_ALL_SUBJECT_AND_
OBSERVER;
 return oSUCCESS;
}

Introduction to OPEN-R
The stub.cfg file defines the gates of the object

(one file per object)

The connect.cfg file defines how objects inter-
connect (one file per program)

ObjectName : SampleObserver
NumOfOSubject : 1
NumOfOObserver : 1
Service : "SampleObserver.DummySubject.DoNotConnect.S", null, null
Service : "SampleObserver.ReceiveString.char.O", null, Notify()

SampleSubject.SendString.char.S SampleObserver.ReceiveString.char.O

OBJECT.CFG file contains objects to be executed
/MS/OPEN-R/MW/OBJS/POWERMON.BIN
/MS/OPEN-R/MW/OBJS/SUBJECT.BIN
/MS/OPEN-R/MW/OBJS/OBSERVER.BIN

add FTP!

Introduction to OPEN-R

Object initialised: send AR to subjects

An object's life

Introduction to OPEN-R

Object initialised: send AR to subjects

An object's life

Object waits on a state for a message from
one of its subjects

Introduction to OPEN-R

Object initialised: send AR to subjects

An object's life

Object waits on a state for a message from
one of its subjects

When received a message, the object
activates a method to process it

Introduction to OPEN-R

Object initialised: send AR to subjects

An object's life

Object waits on a state for a message from
one of its subjects

When received a message, the object
activates a method to process it

Can act like
a subject,
sending
commands
to other
objects

{

Introduction to OPEN-R

Object initialised: send AR to subjects

An object's life

Object waits on a state for a message from
one of its subjects

When received a message, the object
activates a method to process it

When message processed, it sends an AR
message to the subject

Introduction to OPEN-R

Object initialised: send AR to subjects

An object's life

Object waits on a state for a message from
one of its subjects

When received a message, the object
activates a method to process it

When message processed, it sends an AR
message to the subject

Introduction to OPEN-R

 OVirtualRobotComm

In charge of implementing
the access to sensors,
actuators and camera

 OVirtualAudioRobotComm

In charge of implementing
the audio interaction with
the robot

Two special objects:

Programmer's objects must communicate with them in
order to obtain sensors and audio values, and to send
commands to actuators

They act like a normal OPEN-R object

Introduction to OPEN-R
Sensor information is obtained from the Sensor

gate of OVirtualRobotComm

Data obtained is a structure of type
OSensorFrameVectorData

OSensorFrameVectorData

ODataVectorInfo OSensorFrameInfo
GetInfo()

OSensorFrameData
GetData()

OSensorValuetype

primitiveID

frameNumber

numFrames
numData

maxNumData

Introduction to OPEN-R
 Two points to clarify

 Data from sensors is obtained in frames
 Any sensor and actuator has its own primitive to

access to it.
"PRM:/a1-Sensor:a1", // ACCELEROMETER Y

But OSensorFrameVector uses primitive's ID

See SensorObserver7 example

Introduction to OPEN-R
To obtain a sensor value:
 Get the primitive of the sensor

"PRM:/a1-Sensor:a1"
 Get the primitive ID with OPENR::OpenPrimitive()

result = OPENR::OpenPrimitive(ERS7_SENSOR_LOCATOR[i], &sensorID);
 Compare ID with the one given by OSensorFrameInfo and obtain its

index

OSensorFrameInfo* info = sensorVec->GetInfo(j);

 if (info->primitiveID == sensorID) {
 Store index in user array

ers7idx[i] = j;

 continue ->

Introduction to OPEN-R
 Use the index with OSensorFrameData to access sensor value

OSensorFrameData* data = sensorVec->GetData(index);

 OSYSPRINT(("[%2d] val %d %d %d %d\n",

 index,

 data->frame[0].value, data->frame[1].value,

 data->frame[2].value, data->frame[3].value));

Introduction to OPEN-R
Commands to actuators are sent through the

Effector gate of OVirtualRobotComm

Data sent is a structure of type
OCommandVectorData

OCommandVectorData

ODataVectorInfo OCommandInfo
GetInfo()

OCommandData
GetData()

OCommandValue
type

primitiveID

numFrames
numData

maxNumData

Introduction to OPEN-R

Steps to send a command
 Initialization
 Setting joint gains
 Calibrating joints
 Using shared memory region
 Setting the joint value

