
Aibo Programming
An introduction to R-CODE and OPEN-R

IX-2004
by Ricardo A. Téllez

General Index

 Short introduction to the Aibo robot
 Setting the environment up
 Introduction to R-CODE
 Introduction to OPEN-R

Aibo Programming

SHORT INTRODUCTION TO THE
AIBO ROBOT

Aibo Description
 It is a robot dog

created by Sony
 Fully programmable
 Several models

already:
 Mutant
 ERS-110
 ERS-210
 ERS-220
 ERS-7

Aibo Description
 For the ERS-7:

 It has 18 DOF
 It has several sensors:

 Paw sensors (4)
 Distance sensors (3)
 Touch sensors (4)
 Color camera (1)
 Stereo micro (2)
 Accelerometers (3)

Aibo Description
 Aibo programs are

stored into memory
sticks (MS)

 MS are plugged into
Aibo to run the
program

 You can produce any
type of controller
program for Aibo:
neural controller,
behavior based, etc...

Aibo Description

 R-CODE
 It is a scripting

language
 Easy to use and to

generate behaviors
 No compilation

required
 Complete control of the

robot is not possible

 OPEN-R
 It is a C++ Software

Development Kit
 Difficult to understand

and to generate control
architectures

 C++ compilation
required

 Allows total control of
the robot

The programming environment

Aibo Description

 Remote Framework
 Visual C++ program

that runs on a PC
 The program connects

with Aibo
 Remote control the

robot

 Motion Editor (MEdit)
 Easy creation of

motions for Aibo

Additional tools (released by Sony)

Aibo Programming

SETTING THE ENVIRONMENT UP
- Installing the OPEN-R SDK on the PC (done)

- Installing the memory stick reader/writer (MS R/W)
- Installing the base system on a memory stick (MS)

- Setting up the wireless network
- Compiling a sample program

- Setting the FTP server

Setting the Environment Up
Installing the OPEN-R

SDK on the PC (done)
 For this course, this

task has been done by
the sysadmin

 Almost automatic
 More info in the Aibo

Quickstart Manual and
the Sony's Installation
Guide

Installing the MS
reader/writer
 Most of work done by

the sysadmin
 Plug the MS R/W
 Insert a MS on it
 Type on a console:

 mount /mnt/usb
 cd /mnt/usb

Setting the Environment Up
Installing the base system on a MS

 Select the type of environment (Basic, Wlan or
Wconsole)

 Select the memory protection type (memprot,
nomemprot)

 Copy the resulting OPEN-R directory to the memory
stick (cp -r OPEN-R /mnt/usb)

Setting the Environment Up
Setting up the wireless network: configuring a

wireless environment with Access Point (AP)
 Configuration of the AP done by sysadmin
 Configuration of the PC done by sysadmin
 Configuring the Aibo wireless card:

 Modify the OPEN-R\SYSTEM\CONF\WLANDFLT.TXT file
of the MS with following data:

HOSTNAME: AIBO
ETHER_IP: 147.83.60.20x
ETHER_NETMASK: 255.255.255.0
IP_GATEWAY:147.83.60.200
ESSID: ESAII-EPSEVG

WEPENABLE: 1
WEPKEY: *ESAIIEPSEVG*
APMODE: 2 (auto-mode)
CHANNEL: 3

Setting the Environment Up
Compiling a sample program: the HelloWord
 Go to the HelloWord program directory:

 cd sample_programs/common/HelloWord

 Compile the program
 make ; make install

 Transfer generated code to the MS
 cp -r sample_programs/common/HelloWord/MS/OPEN-R

 Insert the MS on Aibo and switch it on
 Telnet to the robot to see the result

 telnet 147.83.60.20x 59000

Setting the Environment Up
Setting the FTP server
 Compile the FTP program

 cd sample_programs/common/TinyFTPD ; make install

 Install the generated object on the MS
 cp TinyFTPD/MS/OPEN-R/MW/OBJS/TINYFTPD.BIN /

mnt/usb/OPEN-R/MW/OBJS/

 Install the password file
 cp TinyFTPD/MS/OPEN-R/MW/CONF/PASSWD /

mnt/usb/OPEN-R/MW/CONF
 Add line /OPEN-R/MW/OBJS/TINYFTPD.BIN to

 /OPEN-R/MW/ CONF/OBJECT.CFG

Aibo Programming

INTRODUCTION TO R-CODE

Introduction to R-CODE
 It is a scripting

language similar to
Basic

 Allows programming
complicated things
with a few commands

 An R-Code program is
a text file

 Can be created in any
operating system

 Example:
 :START

 CALL:1001

 DO

 WAIT:1

 IF:AU_Voice:=:1:THEN

 WAIT:1

 SWITCH:AU_Voice_ID

 CASE:1:CALL:1003

 CASE:6:CALL:1005

 CASE:ELSE:CALL:1007

 CALL:1001

 ENDIF

 WAIT:1000

Introduction to R-CODE
You can easily do:

 Put Aibo in SIT, STAND and SLEEP positions
 Make Aibo walk, turn around, move head, track ball
 Make Aibo find the ball, AIBOne and faces
 Make Aibo recognise verbal commands (53)
 Make Aibo execute contents (motions, LED, WAVs)
 Use your own motions, LEDs and WAVs
 Acquire distances to objects

Introduction to R-CODE
Running a R-Code program
 Prepare the memory stick with R-Code

 Copy Redist7/Eng/OPEN-R directory to empty MS
 Set the wireless network

 Configure the WLANCONF.TXT file
 Delete file /OPEN-R/APP/DATA/P/OWNER.TXT
 Create file /OPEN-R/APP/PC/AMS/NOAUTH.CFG

 Copy your R-Code program with name
R-CODE.R to /OPEN-R/APP/PC/AMS/

 Switch on Aibo

Introduction to R-CODE
Using the console
 Telnet to Aibo at port

21002
 telnet Aibo_IP 21002

 Send commands using
the console
 Ex: PLAY:ACTION:SIT

 Use EDIT, END and
RUN to send and
execute a new
program

 Use @DISS command
to close connection

Introduction to R-CODE
General considerations
 R-Code programs are scripts (text files)
 Commands are words separated by colons
 Ex: PLAY:ACTION:TURN:90
 R-Code is case sensitive. Use lower case for

user defined vars
 Only ASCII characters and underscores
 Use of 32 bits integers

Introduction to R-CODE

 To produce an R-Code program you use:
 commands, relational operators, system variables

and actions
 You can also use:

 Aibo recognised words, sounds and tones

Introduction to R-CODE
R-Code commands
 They implement different

functions like in a Basic
program

 Each line is a command
 They can be sent

individually through the
console

 Examples:
 ADD, FOR, IF, LET,

WAIT, GO, CALL,
RETURN

R-Code operators
 = Equals
 == is equal to
 <> not equal to
 < less than
 > greater than
 && AND
 || OR

Introduction to R-CODE
System variables
 Describe the status of

the robot
 Can be checked or set

to act consequently
 Examples:

 Face, Pink_Ball,
Pink_Ball_D,
AU_voice, Distance,
Head_ON

Aibo actions
 Actions can be played

by Aibo with command
PLAY:ACTION or
PLAY:MWCID

 Examples:
 SIT, LIE, KICK, TURN,

SEARCH,
TRACK_HEAD

Introduction to R-CODE
Recognised words
 Use the AU_Voice

variable to detect
recognition

 Use the AU_Voice_ID
variable to identify the
word said

Debugging
 Use the console to debug

your programs (EDIT,END
and RUN)

 Use VDUMP to display var
names:
 VDUMP:<var name>

 Use PRINT to display
comments:
 PRINT:<format>:<vars>

Aibo Programming

INTRODUCTION TO OPEN-R

Introduction to OPEN-R
OPEN-R program

A set of OPEN-R objects running concurrently that
communicate between each other.

Objects are like PROCESSES in Aibo's computer
Objects inherit from the base class OObject
Objects are composed of a set of internal states
They must have defined virtual functions DoInit,
DoStart, DoStop and DoDestroy
Ex: HelloWord
(change HelloWord to print a bye message)

Introduction to OPEN-R
Objects communicate through GATES by using
MESSAGE passing (allows coordination)

Object-1 Object-2

Outgoing gate

Outgoing gate

Incoming gate

Incoming gate

Messages

Gates are unidirectional. Two gates
required for bidirectional communication

Introduction to OPEN-R
Objects are composed of internal states. Transitions

between states are started by reception of messages
from other objects (event oriented programming)

MAS_ST
ART

MAS_ID
LE

Status
!=

monetSU
CCESS

Status
!=

monetSUC
CESS

1->
DoSta
rt()

The sender of the message is
called the subject. The
receiver is called the
observer

Messages can be of any type
of data.

The Assert_Ready (AR)
message indicates
readiness

Introduction to OPEN-R
How to implement an object (ex:ObjectComm)

 By inheriting from the base class OObject
 Create the virtual functions DoInit, DoStart,

DoStop and DoDestroy
 Define the states of the object
 Create the constructor
 Define the connections with other objects

(stub.cfg file)
 Create the class required procedures to send,

receive and process messages

Introduction to OPEN-R
DoInit procedure
 Called when object

loaded in memory
 Sets up gates and

registers observers
and subjects of the
object

 Use OPEN-R macros
to do the job

OStatus
SampleObserver::DoInit(const
OSystemEvent& event)
{
NEW_ALL_SUBJECT_AND_OBSERVER;
REGISTER_ALL_ENTRY;

SET_ALL_READY_AND_NOTIFY_ENTRY
;
return oSUCCESS;
}

Introduction to OPEN-R
DoStart procedure
 Called when DoInit

finished in all objects
 Sends AR message to

all observers
 May change from

IDLE to another state
 Use OPEN-R macros

to do the job

OStatus
SampleObserver::DoStart(const
OSystemEvent& event)
{
ENABLE_ALL_SUBJECT;

ASSERT_READY_TO_ALL_OBSERVER;
 return oSUCCESS;
}

Introduction to OPEN-R
DoStop procedure
 Called at shutdown of

the system
 Sends DR message to

all observers
 Changes to IDLE

state
 Use OPEN-R macros

to do the job

OStatus
SampleObserver::DoStop(const
OSystemEvent& event)
{
DISABLE_ALL_SUBJECT;

DEASSERT_READY_TO_ALL_
OBSERVER;
 return oSUCCESS;
}

Introduction to OPEN-R
DoDestroy procedure
 Called after DoStop

finished in all objects
 Deletes all objects
 Use OPEN-R macros

to do the job

OStatus
SampleObserver::DoDestroy(const
OSystemEvent& event)
{

DELETE_ALL_SUBJECT_AND_
OBSERVER;
 return oSUCCESS;
}

Introduction to OPEN-R
The stub.cfg file defines the gates of the object

(one file per object)

The connect.cfg file defines how objects inter-
connect (one file per program)

ObjectName : SampleObserver
NumOfOSubject : 1
NumOfOObserver : 1
Service : "SampleObserver.DummySubject.DoNotConnect.S", null, null
Service : "SampleObserver.ReceiveString.char.O", null, Notify()

SampleSubject.SendString.char.S SampleObserver.ReceiveString.char.O

OBJECT.CFG file contains objects to be executed
/MS/OPEN-R/MW/OBJS/POWERMON.BIN
/MS/OPEN-R/MW/OBJS/SUBJECT.BIN
/MS/OPEN-R/MW/OBJS/OBSERVER.BIN

add FTP!

Introduction to OPEN-R

Object initialised: send AR to subjects

An object's life

Introduction to OPEN-R

Object initialised: send AR to subjects

An object's life

Object waits on a state for a message from
one of its subjects

Introduction to OPEN-R

Object initialised: send AR to subjects

An object's life

Object waits on a state for a message from
one of its subjects

When received a message, the object
activates a method to process it

Introduction to OPEN-R

Object initialised: send AR to subjects

An object's life

Object waits on a state for a message from
one of its subjects

When received a message, the object
activates a method to process it

Can act like
a subject,
sending
commands
to other
objects

{

Introduction to OPEN-R

Object initialised: send AR to subjects

An object's life

Object waits on a state for a message from
one of its subjects

When received a message, the object
activates a method to process it

When message processed, it sends an AR
message to the subject

Introduction to OPEN-R

Object initialised: send AR to subjects

An object's life

Object waits on a state for a message from
one of its subjects

When received a message, the object
activates a method to process it

When message processed, it sends an AR
message to the subject

Introduction to OPEN-R

 OVirtualRobotComm

In charge of implementing
the access to sensors,
actuators and camera

 OVirtualAudioRobotComm

In charge of implementing
the audio interaction with
the robot

Two special objects:

Programmer's objects must communicate with them in
order to obtain sensors and audio values, and to send
commands to actuators

They act like a normal OPEN-R object

Introduction to OPEN-R
Sensor information is obtained from the Sensor

gate of OVirtualRobotComm

Data obtained is a structure of type
OSensorFrameVectorData

OSensorFrameVectorData

ODataVectorInfo OSensorFrameInfo
GetInfo()

OSensorFrameData
GetData()

OSensorValuetype

primitiveID

frameNumber

numFrames
numData

maxNumData

Introduction to OPEN-R
 Two points to clarify

 Data from sensors is obtained in frames
 Any sensor and actuator has its own primitive to

access to it.
"PRM:/a1-Sensor:a1", // ACCELEROMETER Y

But OSensorFrameVector uses primitive's ID

See SensorObserver7 example

Introduction to OPEN-R
To obtain a sensor value:
 Get the primitive of the sensor

"PRM:/a1-Sensor:a1"
 Get the primitive ID with OPENR::OpenPrimitive()

result = OPENR::OpenPrimitive(ERS7_SENSOR_LOCATOR[i], &sensorID);
 Compare ID with the one given by OSensorFrameInfo and obtain its

index

OSensorFrameInfo* info = sensorVec->GetInfo(j);

 if (info->primitiveID == sensorID) {
 Store index in user array

ers7idx[i] = j;

 continue ->

Introduction to OPEN-R
 Use the index with OSensorFrameData to access sensor value

OSensorFrameData* data = sensorVec->GetData(index);

 OSYSPRINT(("[%2d] val %d %d %d %d\n",

 index,

 data->frame[0].value, data->frame[1].value,

 data->frame[2].value, data->frame[3].value));

Introduction to OPEN-R
Commands to actuators are sent through the

Effector gate of OVirtualRobotComm

Data sent is a structure of type
OCommandVectorData

OCommandVectorData

ODataVectorInfo OCommandInfo
GetInfo()

OCommandData
GetData()

OCommandValue
type

primitiveID

numFrames
numData

maxNumData

Introduction to OPEN-R

Steps to send a command
 Initialization
 Setting joint gains
 Calibrating joints
 Using shared memory region
 Setting the joint value

