
R-Code SDK Tutorial

by Ricardo A. Téllez, v1.2

4th September 2004

1



Contents

1 Introduction 3

2 The R-Code SDK 5
2.1 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Installation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2.1 Preparation of the memory stick . . . . . . . . . . . . . . . . 5
2.2.2 Execution of an R-Code program . . . . . . . . . . . . . . . 5
2.2.3 Setting up the wireless console . . . . . . . . . . . . . . . . . 6

2.3 General considerations . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.4 Programming R-Code . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.5 R-Code Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.6 R-Code relational operators . . . . . . . . . . . . . . . . . . . . . . . 11
2.7 Special system variables . . . . . . . . . . . . . . . . . . . . . . . . 12
2.8 Aibo actions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.9 Aibo recognised words . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.10 Debugging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3 Examples 18
3.1 The Greeting.R code example . . . . . . . . . . . . . . . . . . . . . 18
3.2 The Maze.R code example . . . . . . . . . . . . . . . . . . . . . . . 19

4 Creation and use of contents files 21
4.1 Creating contents files . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4.1.1 Creating motion files . . . . . . . . . . . . . . . . . . . . . . 21
4.1.2 Creating audio files . . . . . . . . . . . . . . . . . . . . . . . 22
4.1.3 Creating LED files . . . . . . . . . . . . . . . . . . . . . . . 23

4.2 Converting to ODA files . . . . . . . . . . . . . . . . . . . . . . . . 23
4.3 Create the MWC file . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.4 Copying files to the stick . . . . . . . . . . . . . . . . . . . . . . . . 25

2



1 Introduction

The R-Code SDK conforms a set of tools released by Sony in order to allow program-
ming Aibo using the R-Code language. R-Code is a scripting language for program-
ming Aibo robots. By script it is meant a simple text file containing simple commands.
Those commands allow the programmer to send instructions to Aibo in a higher level
manner than typical C++ programming environment (like for example the OPEN-R
environment for Aibo). Scripting languages have the benefits of being simple to learn
and to use and require no compilation, but they have the drawback of allowing less
control to the programmer on how to do things. You can see an R-Code example here:

:1000
PLAY:ACTION:STAND
IF:Face:=:1:THEN
WAIT
PLAY:ACTION:CLIFF_DETECT_OFF
WAIT

R-Code allows to program complicated things (like walking or dancing) with just a
few commands in a text file. Think of R-Code instructions like macros and OPEN-R
programs like the code of those macros. With the use of the macros you cannot obtain
more precision than the one coded in it by the OPEN-R code. Use R-Code when you
do not require a precise control of the dog, just to perform actions, and start predefined
movements or responses. But do not misunderstand: R-Code is a powerful tool that
allows the implementation of real complicated behaviours.

To be able to use R-Code with Aibo, you will need two main things: first, a properly
configured memory stick, and second, your R-Code program. In order to have the
memory stick ready to work, you will need to have an empty one and save into it
some special files provided by Sony (the Redist71 files). Those files are called the base
system, and are part of the R-Code SDK. Once you have your memory stick with the
base system installed on it, you can transfer your R-Code program to the stick.

Even that the R-Code SDK contains some specific files for Microsoft Windows
based systems (the RTool and NsmAuth files), development of R-Code programs can
be done in any operating system having a text editor. R-Code programs are plain text
files that need no compilation, so any computer system providing such an editor will
work fine with R-Code.

What you can do with R-Code:

� Put AIBO into its three basic postures (sit, stand and sleep)

� Make AIBO walk, turn around, kick, touch, move its head, and track its pink ball

� Make AIBO find a pink ball, face, and AIBOne.

� Make AIBO recognise 53 verbal commands, 35 media link sounds, and 68 tonal
scales

1Redist7 is the R-Code package for Aibo model ERS-7. Other models of Aibo require other R-Code base
system, also provided by Sony. We will focus here in the ERS-7 version of R-Code.

3



� Execute 600 built-in contents (motions, sound, LED patterns) which are included
in commercial AIBOware (AIBO MIND)

� Execute motions created using AIBO Motion Editor

� Execute MIDI, WAV sound created by users

� Execute LED patterns created by users

� Acquire data about obstacle detection (distance recognition), and data from the
head, back, and chin touch sensors;

� Use control statements including IF and FOR statements

� Run subroutines

� Use variables (32-bit integers only)

� Perform arithmetic operations

� Perform stack PUSH and POP operations

� Use the Wireless LAN capability to send commands to AIBO and for debugging.

4



2 The R-Code SDK

2.1 Description

The R-Code SDK is the group of files released by Sony that allows users to program in
R-Code. It contains several files:

� Redist7: is the set of files that will compose the base system of the memory
stick. That base system will be needed in order to execute your R-Code program.
Redist7 contains both Japanese and English versions, so you will need to select
the one correct for you.

� Rtool: a windows application that converts MTN files (files describing Aibo
motions, created by using Medit or another motion editor) into a format that can
be recognised by R-Code and then used by it (this is called the ODA format).
This utility also creates a special file called ERS-7.MWC which contains a list
of motions, and lights and sound. The generation of such files will be discussed
later. An R-Code script can invoke any of the contents of the ODA file by using
the following command: PLAY:MWCID:<number>

� NsmAuth: is a library to be linked with windows C++ programs that want to
connect to Aibo’s R-Code wireless remote command line2 and use authentica-
tion.

2.2 Installation

Go to the Sony Open-R web page (http://openr.aibo.com) and download the R-Code
files. These include Redist7_ver1.zip, Rtool_ver1.zip and NsmAuth_ver1.zip. Never-
theless, you will only need now the first one, since the others are some support files for
more complicated environments.

2.2.1 Preparation of the memory stick

First step is to prepare the memory stick with the correct file structure. In this way,
the memory stick will be able to accueil your R-Code program. Unpack the Re-
dist7_ver1.zip file. This will generate several files and directories. Now copy the
Redist7/Eng/OPEN-R folder generated into an empty memory stick. Now the stick
is ready to accommodate your program.

2.2.2 Execution of an R-Code program

Generate your program using any text editor. Save it with the name R-CODE.R (it
must have that name). Then install this file in the /OPEN-R/APP/PC/AMS/ directory
of your memory stick. Insert the memory stick into Aibo and switch it on. Aibo will
automatically execute your program.

2The wireless command line will be described in section 2.5

5



2.2.3 Setting up the wireless console

The wireless LAN console for R-Code SDK allows the user to send commands directly
from a telnet session with Aibo. This has several advantages like online debugging or
testing of routines and commands. To set up the console follow the steps:

1. Enable the wireless LAN. This step is explained in the OPEN-R web site (http://openr.aibo.com)
or in the Aibo quick-start guide of the same author as this document (it can
be found at http://www.ouroboros.org/~rt71592). Basically you will have to
change the network parameters of the file in the memory stick path OPEN-
R/SYSTEM/CONF/WLANDFLT.TXT. Please refer to the texts named for any
problem you may have.

2. Disable authentication in R-Code. By disabling authentication neither ID nor
password will be required when connecting to the Aibo console. To do this, just
delete the file in the memory stick /OPEN-R/APP/DATA/P/OWNER.TXT and
create the file /OPEN-R/APP/PC/AMS/NOAUTH.CFG (with size zero).

3. Insert the memory stick into Aibo and start it.

4. Connect to the robot by telnet protocol. Connections are accepted at port 21002,
so the command would be telnet Your_Aibo_IP 21002. If connection succeeds,
you will see an R-Code header on your screen and after some information the
console prompt will be displayed (see figure 1).

5. You can send commands directly to Aibo by just typing in the console.

6. You can send whole programs directly by typing first the command EDIT. Then
write your program on the console. Once you finish it, type END to specify
that your program is finished and ready to execute. To execute the program type
RUN. Any program sent by this way will replace the present program in Aibo’s
memory (not in the memory stick).

7. To disconnect the console type the @DISS command.

2.3 General considerations

Before starting coding into R-Code some general considerations must be set:

1. R-Code scripts are composed of lines of text specifying commands. Commands
are words separated by colons. Only ASCII characters and underscores can be
used in words, and lines can not be longer than 127 bytes long, including com-
ments and the newline character. Indentation characters (Tabs and spaces at the
beginning of the line) are ignored.

2. Lines beginning with a colon are considered label rows. These are used to jump
between lines of code by using the GOTO function. Lines beginning with a
character that is not an alphanumeric one or a colon are treated as comment
lines. A comment can also be specified with a double slash. After the double
slash everything is treated as a comment.

6



Figure 1: A telnet session with Aibo in R-Code

7



3. R-Code is case sensitive. It means that Value and VALUE are different variables.
Also, words completely capitalised are reserved for R-Code system use, so it is
better not to give capitalised names to your own variables. For example, Value
and value are good names for your variables, but VALUE is a bad name.

4. Words starting by plus, minus or a number are treated as numbers. Numbers
starting by 0x or 0X are treated as hexadecimal. Numbers starting by 0o or 0O
are treated as octal numbers. Numbers starting by 0b or 0B are treated as binary
ones.

5. Only 32 bits integers can be used.

2.4 Programming R-Code

Any R-Code program is a list of commands for the Aibo robot. Programs look very
similar to Basic programs and implement all the typical instructions of such an pro-
gramming language like conditionals, subroutines, flow control, use of variables, etc,
but also, R-Code provides the implementation of a stack that works in a similar way
of that of the assembler language. The list of available commands is specified in the
section 2.5 and is very self descriptive.

Usually, the R-Code program is generated using any ASCII text editor. The pro-
gram should be written on the editor, and once finished, it must be saved into the
memory stick (directory /OPEN-R/APP/PC/AMS/) with the name R-CODE.R. Then
the memory stick is inserted into Aibo and the program will run when Aibo is switched
on. There exists the possibility of creating the program directly into Aibo by using
the wireless console. This approach has the advantage of been more flexible and faster
when debugging errors (see section 2.10).

R-Code defines a set of variables that allow the programmer to identify the status
of the robot. A complete set of the variables available is described in section 2.7. There
are variables that correspond to the values of internal states but also to values sensed
by the sensors. The programmer can read and set the status of those variables at any
time, and make Aibo act consequently. For example, a variable called Face, indicates
when Aibo has detected a face (it is set to value 1). You can use that value to see if
Aibo is in front of someone. Other variables exist that show for example the value of
the paw sensors or the detection of the ball or the AIBOne. The programmer can also
create his own variables and use them to make calculations or pass them as parameters
to subroutines (by using the stack). Just put the parameters in the stack by using the
PUSH command, then call the subroutine (using the CALL command), and inside it,
retrieve the parameters in the same order by using the ARG command.

R-Code can also make Aibo play actions. An action is a predefined movement (or
group of actions) identified by a name. Those movements have been pre-done by the
Sony engineers, so you do not have to design them, just to use them. You can specify
which action you want the robot to perform by just indicating it, and the robot will
do it. Just type PLAY:ACTION:<the action> to execute an action. For example, you
can order Aibo to SIT by typing PLAY:ACTION:SIT. Some actions require the use of
several parameters, that you may add to the action command. For example, if you want

8



Aibo to turn some degrees, you must specify the number of degrees as a parameter
(PLAY:ACTION:TURN:30). A list of all the available predefined actions is provided
in section 2.8 but you can create your own actions by using the MEdit and RTool tools
(see section 4 about how to create new actions).

It is also possible to make Aibo recognise some spoken words by using R-Code.
Aibo implements a speech recognition system that the programmer can make use of it.
It also has a tone and a sound recognition system, that recognises tones and sounds
produced by other Aibos (making it possible to make Aibos communicate easily).
The variable AU_Voice indicates when a voice has been detected, and the variable
AU_Voice_ID indicates the ID of the recognised word. A list of the words that can be
recognised by Aibo is provided in section 2.9.

Summarising, any R-Code program will consist of a series of commands that will
make Aibo hear, move and perform actions. Most of the actions and recognitions are
already built inside R-Code so the programmer has just to make use of them. R-Code
programs can be as complicated as you want!.

2.5 R-Code Commands

The following list contains an alphabetical list of all the R-Code commands and a brief
description of their workings3:

! Break (force stop). Usage: !
: Label. Usage: :<label name>
ADD Add two values. Usage: ADD:<var>:<value> which performs <var> = <var>

+ <value>
AND Logical product. Usage: AND:<var>:<value> which performs <var> = <var>

& <value>
ARG Retrieve subroutine argument from the stack into the variable. Note that ar-

guments are retrieved first-in-first-out. Usage: ARG:<var>
BREAK Break out of loop. Usage: BREAK
CALL Call subroutine. Usage: CALL:<label>{:<argc>}. <argc> specifies the

number of variables pushed onto the stack.
CASE Multiway-branching (Conditional execution). Usage 1: CASE:<constant>:<command>

Usage 2: CASE:ELSE:<command>
CLR Clear sensor variable. Usage: CLR:SENSORS
CSET Multiway-branching (Context value setting). Usage: CSET:<value1>:<operator>:<value2>:<value3>
DIV Divide. Usage: DIV:<var>:<value> which performs <var> = <var> / <value>
DO DO loop. Usage: DO{:WHILE | UNTIL:<value1>:<operator>:<value2>}. Re-

quires the use of LOOP
DUP Copy the stack’s top element and PUSH it onto the stack. Usage: DUP
EDIT Load program. Usage: EDIT
END Program load end point. Usage: END
EQ Checks if the two first values on the stack are equal, and pushes the result onto

the stack. Usage: EQ

3A deeper description including examples can be found in the rcode-ers7-cmdref-xxx_E.txt file provided
with the Redist7.zip file.

9



EXIT Terminate execution. Usage: EXIT
FOR FOR loop. Usage: FOR:<var>:<from>:<to>{:<step>}. Requires the use of

NEXT command
GE Checks if the second value on the stack is greater or equal to the first one, and

pushes the result onto the stack. Usage: GE
GET Displays variable value on the console (for debugging). Usage: GET:<var>
GLOBAL Global variable declaration. Usage: GLOBAL:<var>{:<init_value>}
GO Jump to the label. Usage: GO:<label>
GT Checks if the second value on the stack is greater than the first one, and pushes

the result onto the stack. Usage: GT
HALT Terminate program and shutdowns Aibo. Usage: HALT
IF Conditional test. Usage 1: IF:<value1>:<operator>:<value2>:THEN ... ENDIF

Usage 2: IF:<value1>:<operator>:<value2>:CALL:<label>Usage 3: IF:<value1>:<operator>:<value2>:BREAK
Usage 4: IF:<value1>:<operator>:<value2>:<jump_to_if>{:<jump_to_ifnot>}

INIT Initialise R-Code. Usage: INIT:<init_level>
IOR Logical sum. Usage: IOR:<var>:<value> which performs <var> = <var> |

<value>
JF POP the stack, and if the value is false, jump to label. Usage: JF:<label>
JT POP the stack, and if the value is true, jump to labelJump if stack top is true.

Usage: JT:<label>
LAND Logical product (Boolean operator). Usage: LAND:<var>:<value> which

performs <var> = <var> logical AND <value>
LE Checks if the second value on the stack is less or equal to the first one, and

pushes the result onto the stack. Usage: LE
LET Assign (simple assignment). Usage: LET:<var>:<value>
LIOR Inclusive OR (Boolean operator). Usage: LIOR:<var>:<value> which per-

forms <var> = <var> logical OR <value>
LNOT Negation (Boolean operator). Usage: LNOT:<var>:<value> which performs

<var> = logical NOT <value>
LOCAL Local variable declaration. Usage: LOCAL:<var>{:<init_value>}
LOOP DO loop termination. Usage: LOOP{:WHILE | UNTIL:<value1>:<operator>:<value2>}
LT Checks if the second value on the stack is less than the first one, and pushes the

result onto the stack. Usage: LT
MOD Remainder. Usage: MOD:<var>:<value> which performs <var> = <var> %

<value>
MUL Multiply. Usage: MUL:<var>:<value> which performs <var> = <var> *

<value>
NE Checks if the two first values on the stack are not equal, and pushes the result

onto the stack. Usage: NE
NEXT FOR loop end point. Usage: NEXT
NONE No operation. Usage: NONE
NOT Negation. Usage: NOT:<var>:<value> which performs <var> = ~ <value>
ONCALL Register/Cancel interrupt routine . Usage 1: ONCALL:<v1>:<op>:<v2>:<label>[:<resume_type>:<resume_label>]

Usage 2: ONCALL:<-n>
PLAY Play action. Usage: PLAY:ACTION:<action>{:<optional arguments>}. A

second usage is PLAY:MWCID:<mwcid>{:<optional_arguments>} where mwcid is

10



the ID of a command created by the user and specified in an ODA file (see chap-
ter 4). Aibo has some MWCID actions already defined on it (check the /OPEN-
R/APP/PC/AMS/ACTION.MS file for a complete list of them).

POP Remove element from stack into a variable. If var is not specified, the value
is discarded. Usage: POP{:<var>}

PRINT Print for online debugging. Usage: PRINT:<format>{:<vars_to_print>}.
See more on this command on section 2.10

PUSH Add element to stack. Usage: PUSH:<var>
QUIT Emergency stop. Usage: QUIT
REPEAT REPEAT loop. Usage: REPEAT. Requires the use of UNTIL
RESUME Return from interrupt routine . Usage: RESUME
RET Return from subroutine (context version). Usage: RET:<context>
RETURN Return from subroutine. Usage: RETURN{:<return_value>}. Returned

value is retrieved by using the POP command
RND Generate a random number. Usage: RND:<var>:<from>:<to>. The random

number seed is specified by SET:Seed:<seed>
RUN Begin execution of in memory program. Usage: RUN
SET Assign variables (with special functions) values. Usage: SET:<var>:<value>
STOP Normal stop. Usage: STOP
SUB Subtract. Usage: SUB:<var>:<value> which performs <var> = <var> - <value>
SWITCH Multiway-branching (Context value setting) . Usage: SWITCH:<var>

Requires the use of CASE
SYNC External synchronisation. Stops execution until SYNC command is received.

Usage: SYNC
UNTIL REPEAT loop termination. Usage: UNTIL:<value1>:<operator>:<value2>
VDUMP Display variable value (see section 2.10). Usage: VDUMP:<var>
VLOAD Load variable value from a file on the memory stick in the file /OPEN-

R/APP/PC/AMS/<var name>.SAV. Usage: VLOAD:<var>
VSAVE Save variable value in a file on the memory stick in the file /OPEN-R/APP/PC/AMS/<var

name>.SAV. Usage: VSAVE:<var>
WAIT Wait until end of preceding action or milliseconds. Usage: WAIT{:<ms>}
WEND WHILE loop end point. Usage: WEND
WHILE WHILE loop. Usage: WHILE:<value1>:<operator>:<value2> Requires

the use of WEND
XOR Exclusive OR. Usage: XOR:<var>:<value> which performs <var> = <var> ^

<value>

2.6 R-Code relational operators

List of relational operators. They can be used when performing conditionals.
= Equals
== Is equal to
<> Not equal to
!= Not equal to
< Less than
<= Less than or equal to

11



> Greater than
>= Greater than or equal to
& Bitwise AND (logical multiplication)
| Bitwise OR (logical addition)
^ Bitwise exclusive OR
&& AND/logical multiplication (operands treated as Boolean values: 0 treated as

FALSE / other than 0 treated as TRUE)
|| OR/logical addition (operands treated as Boolean values: 0 treated as FALSE /

other than 0 treated as TRUE)

2.7 Special system variables

Next is an exhaustive list of the system variables. They describe the status of the
robot at any time, and can be checked or set to acknowledge the robot status and act
consequently.

AiboId AIBO ID (0-255) 0 when not connected via WLAN. When connected via
WLAN, least significant byte of IP address

AiboType returns the Aibo Model (7 for ERS-7)
Year Year (2000 or later)
Month Month (1-12)
Day Date (1-31)
Hour Hour (0-23)
Min Minute (0-59)
Sec Second (0-59) resolution 2 seconds
Dow Day of week (Sun(0), Mon(1), ..., Sat(6))
Seed Random number seed (default is 1)
Power Power (0/1): 0 OFF 1 ON Has no meaning for versions 1.1 and later
Status Status: 0 Normal startup 1 Recovery. If AIBO recovers from falling, the

program is started again from the beginning. At this time, the value is set to 1
Context Context value
Wait Number of actions being waited for completion
Clock Clock (incremented by 1 every 32 ms)
Brightness Ambient brightness (0-255)
Face Face was detected (0/1)
Pink_Ball Pink ball (0/1)
Pink_Ball_H Pink ball horizontal angle [degrees]
Pink_Ball_V Pink ball vertical angle [degrees]
Pink_Ball_D Distance to pink ball [mm]. The origin point of the position of Pink

ball is a position of Image sensor.
AIBONE AIBONE (0/1)
AIBONE_H AIBONE horizontal angle [degrees]
AIBONE_V AIBONE vertical angle [degrees]
AIBONE_D Distance to AIBONE [mm]
AU_Voice Voice recognition (0/1)
AU_Voice_ID Voice ID (1-53) see [Voice ID List]
AU_AiboSound AiboSound detection (0/1)

12



AU_AiboSound_ID AiboSound ID (1-35) see [AiboSound ID List]
AU_AiboTone AiboTone detection (0/1)
AU_AiboTone_ID AiboTone ID (1-68) see [AiboTone ID List]
Temp_Hi Temperature at which operation is suppressed (0/1) (for safety, a forced

shutdown will be executed in 20 seconds).
Head_Tilt Head: vertical (up-down) angle 1 [degrees]
Head_Tilt_2 Head: vertical (up-down) angle 2 [degrees]
Head_Pan Head: horizontal (left-right) angle [degrees]
Mouth Mouth: Amount open [degrees]
LFLeg_1 Left-front leg J1 (hip joint): angle in front/back direction [degrees]
LFLeg_2 Left-front leg J1 (hip joint): angle in left/right direction [degrees]
LFLeg_3 Left-front leg J2 (knee joint): angle in front/back direction [degrees]
LRLeg_1 Left-hind leg J1 (hip joint): angle in front/back direction [degrees]
LRLeg_2 Left-hind leg J1 (hip joint): angle in left/right direction [degrees]
LRLeg_3 Left-hind leg J2 (knee joint): angle in front/back direction [degrees]
RFLeg_1 Right-front leg J1 (hip joint): angle in front/back direction [degrees]
RFLeg_2 Right-front leg J1 (hip joint): angle in left/right direction [degrees]
RFLeg_3 Right-front leg J2 (knee joint): angle in front/back direction [degrees]
RRLeg_1 Right-hind leg J1 (hip joint): angle in front/back direction [degrees]
RRLeg_2 Right-hind leg J1 (hip joint): angle in left/right direction [degrees]
RRLeg_3 Right-hind leg J2 (knee joint): angle in front/back direction [degrees]
Tail_Pan Tail: horizontal (left/right) angle [degrees]
Tail_Tilt Tail: Vertical (up/down) angle [degrees]
Batt_Rest Battery charge remainder [%]
Batt_Temp Battery temperature [C]
Distance_Cliff Distance to cliff [mm]
Distance Distance to obstacle [mm]
Head_ON Head sensor pressed (0/1)
Head_LONG Head sensor pressed for 3 seconds or more (0/1)
BackF_ON Front back sensor was pressed (0/1)
BackM_ON Middle back sensor was pressed (0/1)
BackR_ON Rear back sensor was pressed (0/1)
BackFR_LONG Front and rear back sensor and was pressed for 3 seconds or longer

(0/1)
BackF_Jaw_LONG Front back and chin back sensor was pressed for 3 seconds or

longer (0/1)
Back_Pat Back sensors were pet (0/1)
BackR_Hit Back sensor was hit (0/1)
Jaw_ON Chin sensor was pressed (0/1)
RFLeg_ON Right front paw sensor was pressed (0/1)
RFLeg_OFF Right front paw sensor was released (0/1)
LFLeg_ON Left front paw sensor was pressed (0/1)
LFLeg_OFF Left front paw sensor was released (0/1)
RRLeg_ON Right hind paw sensor was pressed (0/1)
RRLeg_OFF Right hind paw sensor was released (0/1)
LRLeg_ON Left hind paw sensor was pressed (0/1)

13



LRLeg_OFF Left hind paw sensor was released (0/1)

2.8 Aibo actions

The following is a list of all the available actions followed by a short description. Play
any of the actions by using the command PLAY:ACTION:<action>:<arguments>

ACTION Description
SIT Sit
STAND Stand
LIE Lie down
WALK Walk. Arguments: <horizontal angle>:<distance>
STOP_WALK Stop walking
TURN Turn around. Arguments: <horizontal angle>
KICK Kick. Arguments: <horizontal angle>:<distance>
TOUCH Touch. Arguments: <horizontal angle>:<distance>
MOVE_HEAD Look in the specified direction. Arguments: <horizontal angle>:<vertical

angle>
TRACK_HEAD Track an object. Arguments: <target>
SEARCH Search for an object. Arguments: <target>
SEARCH.HEAD.NORMAL Search in the current head direction. Arguments: <tar-

get>
SEARCH.HEAD.SLOW Search slowly in the current head direction. Arguments:

<target>
SEARCH.HEAD.NORMALCENT Look forward and search. Arguments: <target>
SEARCH.HEAD.SLOWCENT Look forward and search slowly. Arguments: <tar-

get>
SEARCH.HEAD.LOWCENT Look down and search. Arguments: <target>
PALONE.AUTO.EAR Move both ears
PALONE.AUTO.EARSTOP Stop moving ears
PALONE.AUTO.TAILV Wag tail up and down
PALONE.AUTO.TAILH Wag tail left and right
PALONE.AUTO.TAILROT Rotate tail
PALONE.AUTO.TAILD Lower tail
PALONE.AUTO.TAILSTOP Stop moving tail
MOVE.HEAD.FAST Look quickly in the specified direction. Arguments: <hori-

zontal angle>:<vertical angle>
MOVE.HEAD.NORMAL Look in the specified direction. Arguments: <horizontal

angle>:<vertical angle>
MOVE.HEAD.SLOW Look slowly in the specified direction. Arguments: <hori-

zontal angle>:<vertical angle>
MOVE.TURN.NORMAL Turn around
MOVE.TURN.SLOW Turn around slowly
MOVE.MOVE.NORMAL Walk
MOVE.MOVE.SLOW Walk slowly
CHGPOS.WALK.NORMAL Change to walking posture
CONTACT.RIGHT.TOUCH Sit and touch with right paw

14



CONTACT.RIGHT.TOUCH2 Crouch and touch with right paw
CONTACT.FRONT.HEAD Head the ball
CHGPOS.STATR.NORMAL Lie down
SMESS.NOTICE.NOTICE1 Debug notice 1
SMESS.NOTICE.NOTICE2 Debug notice 2
SMESS.ERROR.ERROR1 Debug error notice 1
SMESS.ERROR.ERROR2 Debug error notice 2
SMESS.MODE.CLEAR Clear debug indication
CLIFF_DETECT_ON Cliff detect on ( default )
CLIFF_DETECT_OFF Cliff detect off

2.9 Aibo recognised words

The following is a list of the words recognized by Aibo. When the AU_Voice variable
has a value of 1, it means that Aibo has recognized a word.The ID of this list is the value
returned in the AU_Voice_ID variable by the recognition system in order to show to
the programmer which word was recognized.

ID Word
1 AIBO
2 What’s your name?
3 Say hello
4 Shake paw
5 Morning
6 Hello sentences sentences
7 Good night
8 See you
9 How are you?
10 Hey AIBO
11 Thanks
12 Sorry
13 Cheer up
14 Banzai
15 That’s right
16 That’s wrong
17 Good AIBO
18 Don’t do that
19 Let’s play!
20 Sing a song
21 Dance
22 Show time
23 Pose for me
24 Clown around
25 Show off
26 Say message
27 Let’s be secret
28 Open sesame

15



29 Happy day
30 Stand up
31 Lie down
32 Sit down
33 Turn right
34 Turn left
35 Go forward
36 Go backward
37 Go ahead
38 Stop
39 Faster
40 Slow down
41 Pink ball
42 Right leg kick
43 Right leg touch
44 Left leg kick
45 Left leg touch
46 Ready set go
47 You won
48 You lost
49 Action one
50 Action two
51 Action three
52 Action four
53 Action five

2.10 Debugging

A good procedure when creating R-Code programs is to create them by using the wire-
less console. It allows the easy test and debugging of the program without having to
write all the time in the memory stick. Also, by using the wireless console, you can see
messages posted by your R-Code program on it.

To create a program using the wireless console, connect to the console as specified
in section 2.2.3. The write your program into a text editor. Once you have it finished,
type in the wireless console the EDIT command. Copy the text in the editor and paste
it into the console. Type in the console the END command. At this point your new pro-
gram is installed in Aibo’s memory. To execute the program, type the RUN command
in the console.

To send messages to the console, R-Code provides two commands:

1. VDUMP: this command displays a variable’s value on the console. The use is
VDUMP:<var name>. This will display on the screen the sentence: <var name>
= <var value>

2. PRINT: it displays a message on the console in a similar way to the printf()
command of C. The use is PRINT:<format>:<var1>:...:<var5> where <format>

16



defines the format of the string as %d for decimal or %x for hexadecimal, and
<var> are the names of the variables. The <format> parameter can include some
text that clarifies the sentence being displayed. The text follows the the typical
C description. For example:

PRINT:”The value1 is %d and the value2 is %d”:x:y

17



3 Examples

Here you will find describes the workings of the two examples included in the R-Code
SDK by Sony. They are called Greeting and Maze.

3.1 The Greeting.R code example

The Greeting.R sample code makes Aibo recognise voice and perform a greeting sam-
ple.

//—————————————- // GREETING //————————————-
:START
CALL:1001 // calls an initialisation subroutine called 1001 (see bellow)
DO // when it returns from the subroutine, it starts a loop (DO..LOOP)
WAIT:1 // waits for 1 ms
IF:AU_Voice:=:1:THEN // if voice has been recognized then
WAIT:1
SWITCH:AU_Voice_ID // looks for which voice command has been said
CASE:1:CALL:1003 // it has been said AIBO?. Then call subroutine 1003
CASE:6:CALL:1005 // it has been said HELLO?. Then call subroutine 1005
CASE:ELSE:CALL:1007 // if none of them, call a routine to play angry sound
CALL:1001 // call the reset routine
ENDIF
WAIT:1000 // wait one second
LOOP // end of the loop (DO..LOOP)
// RESET
:1001
PLAY:ACTION:STAND // makes Aibo stand up
WAIT // waits until Aibo has finished the previous action (important!!)
SET:AU_Voice:0 // initialises voice recognition variable to zero
RETURN
// AIBO word has been said
:1003
PLAY:ACTION:WALK:0:100 // walks some steps
WAIT // waits until Aibo has finished the previous action (important!!)
PLAY:ACTION:MOVE_HEAD:0:-50 // moves the head
WAIT // waits until Aibo has finished the previous action (important!!)
PLAY:ACTION:MOVE_HEAD:0:0// moves the head
WAIT // waits until Aibo has finished the previous action (important!!)
RETURN
// GREET. HELLO word has been said
:1005
// L_PHUMAN.M_GREET.S_NORMAL
PLAY:MWCID:2750 // plays a greeting sound
WAIT // waits until Aibo has finished the previous action (important!!)
RETURN
// ANGRY. The word has not been understood

18



:1007
// L_EDSP.M_ANGRY.S_SOUNDLED
PLAY:MWCID:2471 // plays the angry sound and led combination
WAIT // waits until Aibo has finished the previous action (important!!)
RETURN

3.2 The Maze.R code example

The Maze.R code, makes Aibo escape from a maze
//—————————————— // MAZE //——————————————

:1000
PLAY:ACTION:STAND // makes Aibo stand up
WAIT // waits until the action has been performed
PLAY:ACTION:CLIFF_DETECT_OFF // disconnects detection of cliff
WAIT
DO // starts a loop
PLAY:ACTION:MOVE_HEAD:0:0 // moved head to the centre
WAIT
PLAY:ACTION:WALK:0:10000 // walks at horizontal angle 0 for 10 meters
FOR:t:1:1000 // starts a FOR loop
IF:Distance:<:300:BREAK // If AIBO finds a wall in less than 300 mm or t=1000

then break
WAIT:1
NEXT // end of FOR loop
PLAY:ACTION:STOP_WALK // stops walking
WAIT
PLAY:ACTION:MOVE_HEAD:90:0 // moves head to one side
WAIT // waits until the action has been finished (very important!!)
PLAY:ACTION:MOVE_HEAD:-90:0 // moves head to the other side. In this case

it does not wait for the conclusion
// this implies that Aibo’s head will perform a scanning of distances form one side

to the other
SET:dd:0
WHILE:Wait:>:0 // starts WHILE loop. It will continue until the last action has

been finished
SET:d:Distance // sets d variable with the distance sensed
SET:p:Head_Pan // sets p variable with the value of the head pan angle
IF:d:>:dd:THEN
SET:dd:d // dd contains the largest distance to a wall
SET:pan:p // pan contains the pan angle to that distance
ENDIF
WEND // end of WHILE loop
VDUMP:dd
VDUMP:pan

19



IF:dd:<:300:THEN // If dd is less than 300, then it means that there is nowhere to
go (turn 180)

PLAY:ACTION:TURN:180 // then Aibo turns 180 degrees
WAIT
ENDIF
PLAY:ACTION:MOVE_HEAD:pan:0 // If found an exit, then moves the head on

that direction
PLAY:ACTION:TURN:pan // and then moves the body on that direction
WAIT
LOOP // end of the loop

20



4 Creation and use of contents files

Even that the base R-Code environment comes with a lot of sequences of movements,
LED patters and sounds, it is possible that you create your owns and to include them in
your R-Code programs. For example, you can create your own dance movements using
a motion editor, and then invoke that dance in your R-Code program using the PLAY
command. All the motions, sounds and LED patterns used for your dance movement
are called the contents files. This section describes how to create and use them.

The basic steps to create and use such contents is the following:

1. Create the contents files. This depends on what you want to use on your program.
Motions are described in MTN files (*.mtn), LED patterns are created in LED
files (*.led) and audio can have wave or midi files (*.wav,*.mid).

2. Convert the contents files to ODA files.

3. Edit a command list file, called MWC.CFG, that will contain a list of all the new
contents.

4. Convert the command list to ERS-7.MWC.

5. Copy the ODA and ERS-7.MWC to the memory stick.

6. Invoke the contents you created from your R-Code program using the PLAY
command.

There are several tools available for the creation of the content files. This text will
concentrate on the use of the official tools released by Sony (when available), but points
to the other third-part tools will be also given.

4.1 Creating contents files

There are three types of contents files to be created: motion, audio and LED patterns.

4.1.1 Creating motion files

Motion files describe sequences of movements of Aibo’s joints and have *.mtn exten-
sion. These sequences must be designed by the programmer using a motion editor pro-
gram. There are several motion editor for Aibo available, like for example AIBO Mas-
ter Studio (released from Sony) or Skitter (that can be found at http://www.dogsbodynet.com
for free). For the creation of motions for Aibo ERS-7, Sony released for free the Motion
Editor (MEdit) program that can be downloaded from its web site.

To use the MEdit program, download it from openr.aibo.com and install it. It is
only available for Windows systems, but it works well under Linux if started using
Wine4 (see figure 2).

4Wine is a free Windows emulator for Linux that allows the execution of Windows programs under Linux.
You can find it with instructions of use at http://www.winehq.com

21



Figure 2: The MEdit program running under Linux

Once installed, use the MEdit program to create your motion contents. It is not
described here how to use that program. You will find a very good tutorial included
with the program.

4.1.2 Creating audio files

Audio files contain the sounds and music that Aibo can reproduce, and are saved with
*.wav and *.mid extensions. You can create two types of audio files: MIDI or WAV.
Sony doesn’t provide any special tool for the creation of those contents, but you can
find lots of free applications on the Internet to create those files. Just keep in mind the
following considerations when designing WAV and MIDI files:

1. WAV files can be coded in the following formats:

� 8k 8bits MONO PCM
� 16k 16bits MONO PCM
� 8k 4bits MONO IMA ADPCM
� 16k 4bits MONO IMA ADPCM

2. MIDI files must be coded in the following format:

� SMF Format0

If you don’t have an audio program to generate your files, you can use the Skitter
motion editor program. This motion editor program has a built in editor for the handling
of Aibo sounds.

22



4.1.3 Creating LED files

LED files have sequences of LEDs that Aibo can reproduce, and they are saved with
*.led extension. LED files are saved in the same format as MIDI files, so you can
use you MIDI generator application to generate your LED patterns. LED files must
be saved in SMF Format0 with only track 1 as effective. You can also use the Skitter
performance editor to create your LED files, since it has a built in LED editor.

4.2 Converting to ODA files

This step will convert your MTN, WAV, MIDI and LED files to MOTION.ODA, AU-
DIO.ODA and LED.ODA files.

1. In order to convert the contents files to ODA files you must create first a directory
for each type of content: a MOTION directory, an AUDIO directory and a LED
directory. Store in each directory the contents files related, and then run the
RTool.exe program, downloaded from the OPEN-R web site.

2. Select the ODA tab and select the MOTION,AUDIO, LED and Output Path di-
rectories to the ones created by you on the previous step. The Output Path is the
place where the final ODA files will be placed by RTool.

3. Select which ODA files do you want to create and click Make ODA to create the
files.

4.3 Create the MWC file

The MWC file is the file that will describe all the new motions, sounds and LED
patterns that you have created by assigning to each one an identifier (ID). This ID
will be the number to use in your R-Code program when trying to play an action
(PLAY:MWCID:<your ID>). The MWC file required is called ER-7.MWC. To create
that binary file, first you must create a text file called MWC.CFG (this is the command
list) and then convert it to the binary one by using RTool. An example of the MWC file
is the following:

#MWC 1.0
1 3
26000 3
cmagentMOTIONPERFORMER a_stand#stand_so0r_greet 1 1 0x0 0x0 0
cmagentSOUNDPERFORMER soc_d00greetso0r_x1x 1 1 0x0 0x0 0
cmagentFACELIGHT so12_d00greetso0r_l1f 1 1 0x0 0x0 0

The steps to create such file are the following:

1. Creation of a MWC.CFG file. You can create a new one or modify an existing
one. Follow the steps below about how to create a new one:

23



(a) Each new command should have a unique ID to use with the PLAY com-
mand of R-Code. New commands should have an ID starting from 26000
and up to 27999.

(b) The MWG.CFG file will have the following format:

#MWC 1.0
Num1 Num2
Num3 Num4
Text1 Text2 Num5 Num6 Num7 Num8 Num9

where NumX and TextX have the following values:

� Num1: is the number of MWCommands included in the file
� Num2: is the number of CMAgent Commands included in the file
� Num3: is the ID of the following command defined in the file (from 26000

to 27999)
� Num4: is the number of CMAgent Commands in the same MWCommand
� Text1: is the type of CMAgent Performer. It depends on the type of con-

tents that is going to reproduce, and follows the next list

– cmagentMOTIONPERFORMER All body motion

– cmagentMOUTHPERFORMER Mouth motion

– cmagentHEADPERFORMER Head motion

– cmagentLEGPERFORMER Legs motion

– cmagentTAILPERFORMER Tail motion

– cmagentEARPERFORMER Ear motion

– cmagentSOUNDPERFORMER Sound
– cmagentMODELIGHT Mode LED

– cmagentFACELIGHT Face LEDs

– cmagentEARLIGHT Head LEDs

– cmagentBACKLIGHT Back LEDs

– cmagentLIVELIGHT Wireless LAN LED
� Text2: is the filename of the CMAgent command. Usually is the content

file name without the filename extension
� Num5: number of times the CMACommand must repeat. Usually is 1
� Num6: Synchronous CMACommand. If one command has one content,

it should be 0. (No Sync) If one command has two or more contents, it
should be 1. (Sync)

� Num7: parameter (Internal use). It should be 0x0
� Num8: parameter 0x01=this command can be stopped at anytime. 0x0=this

command cannot be stopped until the end. Recommend 0x0. You should
be careful when making stoppable motions.

24



� Num9: it should be 0

2. To start conversion, initiate RTool and select the Input file (MWC.CFG), the
Output file (ERS-7.MWC) and the Base file (this is a file called BASE-7.MWC
provided by RTool located under the MWC/ directory).

3. Click the Make MWC button. The ERS-7.MWC binary file will be created.

4.4 Copying files to the stick

Once all the files have been created, they must be saved onto the memory stick in
order to be able to use them in your programs. Copy MOTION.ODA, LED.ODA and
AUDIO.ODA to the OPEN-R/MW/DATA/P/ directory of the memory stick. Copy the
ERS-7.MWC file to the OPEN-R/MW/CONF/ directory of the memory stick.

Now you can use your new content created by calling it with the PLAY:MWCID:<your
ID> command inside your R-Code program or from a telnet console.

25


