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The opposite of a modular system is a coupled one.

In a coupled system, changes in one part trigger changes in another.

Coupling leads to complexity.

Complexity leads to confusion.

Confusion leads to suffering

This is the path to the Dark Side.

Paul Fitzpatrick
Towards long-lived robot software,

Workshop on Humanoid Technologies,
Humanoids 2006
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Abstract

This thesis is about generating neural network based controllers for complex
robots. For such goal, one of the main problems is how to obtain a trained neu-
ral network which successfully controls the robot. A promising methodology is
the use of evolutionary robotics (ER). However, up to date, ER methods do not
achieve the generation of behaviors for complex robots with a fixed body struc-
ture composed of lots of sensors and actuators. No satisfactory results exist due
to the large search space that the ER algorithm has to face. Furthermore, the
boostrap problem prevents the generation of simple solutions with a minimum
fitness value that could guide the evolutionary path towards the final solution.
Solutions like incremental evolution try to overcome the problem, but they do
not scale well in complex robots with lots of devices.

The question is then, why natural evolution succeded evolving complex an-
imals, but ER do not. One answer to that question may be that, while natural
evolution gradually evolved at the same time the animals body plan, their sen-
sors and actuators, their nervous system, and even their environment, artificial
evolution tries to evolve the nervous system for a robot with a fixed given body,
sensors and actuators, within a fixed complex environment.

Our proposal states that when none of the evolutionary constraints can be
relaxed, then it will be mandatory the use of external knowledge to guide the
evolutionary process. ER approaches try to avoid the use of such knowledge
(called bias) because it directs the evolutionary search towards specific solutions.
In this work, we advocate instead for the use of bias as an inevitable situation
when the robot body, task and environment are complex and fixed.

Based on this idea, we develop a modular architecture for evolutionary con-
trollers called DAIR, which allows the selective introduction of bias in the
evolutionary controller. The architecture allows the introduction of external
knowledge on selected stages of the evolutionary process, affecting only se-
lected parts of the controller that need to accomodate that information. The
evolutionary controller is progressively designed in a series of stages, almost in
a quirurgical way, independently of the complexity of the robot (in terms of
number of sensors and actuators). This approach allows to avoid the boostrap
problem completely, and to obtain a completely distributed controller for the
robot using only artificial evolution.

We will show how to apply our method in general robots, and then we will
apply it to a complex Aibo robot in tasks like walking, standing up, or learning
to touch the ground, both in simulation and real robot. Additionally, we will
show how a DAIR controller can be influenced from external systems by using a
tonic signal. On a final stage, we will study how the architecture elements build
an internal representation of the outside world based on its experiences during
the evolutionary process.

Keywords

Neural networks, complex robots control, evolutionary robotics, modularity,
inner world
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1
Overview

The opening chapter of this thesis consists of a concise overview of the entire the-
sis. It succinctly describes the main area of research, the methodology applied,
and the results obtained. It also includes a summary of contributions1.

1.1 General overview

This thesis focuses on the creation of behaviours in complex robots using artifi-
cial neural networks (ANNs) as information processing elements in a distributed
neurocontrol architecture. The term ”complex robot” is understood as a physi-
cal agent composed of a large number of sensors and actuators. The generation
of neural controllers for these robots is a complex task due to network training.
In most cases training sets for the task at hand are not available, and even when
examples are available it is still unclear as to precisely how to allocate error to
the different components involved in the control of the robot for the given task.

One possible approach is the use of evolutionary robotics methodology for
network training. Evolutionary robotics (ER) uses evolutive algorithms for net-
work weights updating [Nolfi and Floreano, 2000], avoiding training examples
and blame assignment. The use of ER however, presents its own set of prob-
lems; it requires real interaction between the robot and its environment, and it
does not scale well as the complexity of the robot and/or its behaviour grows
up. This thesis will deal with these problems by developing a general distributed
control architecture for robots. This architecture is based on neural networks
as basic processing elements, and will be independent of the task, the environ-
ment, and the robot. The architecture is therefore proposed as a solution to
the problem of generating behaviours in complex robots within the evolutionary
robotics paradigm.

1For an extended overview, including videos, papers and additional images and results,
visit: http://www.ouroboros.org/thesis
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1.1. GENERAL OVERVIEW

1.1.1 AI robotics

One of the main issues when developing AI systems is the artificial creation of an
autonomous entity2 that behaves intelligently in a real life environment. Several
examples exist, from providing care giving assistance to the frail or handicapped,
to the completion of highly complex tasks in extremely dangerous environments,
and ranging right through from dazzling entertainment to mundane, tedious
and repetitive tasks. To design such physically situated autonomous agents,
two integral branches of science and engineering are required to work together:
robotics and artificial intelligence. The combination of these two disciplines
gives birth to what is referred to as AI Robotics [Murphy, 1998], that is, the
creation of physical autonomous robots that have their behaviour controlled by
artificial intelligence-based algorithms. Whilst robotics provides the physical
basis which the entity will rely on, artificial intelligence provides the control
mechanisms for the intelligent use of that body structure in order to complete
tasks in the real world.

We will refer to the software control program as the controller, designed
to perform the robot’s behaviour, since it controls the physical robot body
based on the information the sensors and actuators provide it with. A con-
troller must have an architecture in order to have a principled way of organizing
the control system [Mataric, 1992]. Control architectures can be defined as
[Russell and Norvig, 2003]

the practical structure of a robot’s software which defines how
the job of generating actions from percepts is organized

Or, otherwise stated [Bekey, 2005]

the software which defines the way in which sensing, reasoning,
and actions are represented, organized, and interconnected

The research introduced in this thesis is situated within the AI robotics
framework. The thesis is however exclusively dedicated to the subject of ar-
tificial intelligence, produced by the development of neural control and learn-
ing mechanisms. Even if emphasis is placed on the software development, the
physical robot body plays an important role in the research by providing the
substrate upon which the architecture relies. As will become apparent in due
course, the proposed architecture will accommodate the interaction between the
robotic body and its environment in order to accomplish a task3, according to
the principles stated by new AI [Pfeifer and Bongard, 2007], where intelligence
cannot be understood without a body.

As a main requirement, the architecture to be developed in this thesis will be
independent of what the physical robot body is composed of. The architecture

2Otherwise referred to as an agent.
3In this thesis the term behaviour will be used in a general manner along with the term

task, indicating in both cases the same concept of robot purpose. Whilst the term task is
more commonly used in the robotics field, the term behaviour is the preferred choice of the
AI domain.
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can therefore be applied to any type of robot, completely independent of the
number and type of devices it contains.

The actual implementation of a robot controller within the AI paradigm can
be performed using a variety of different frameworks, including; subsumption
architectures, schema theory, dynamical systems, fuzzy logic, or Bayesian sys-
tems. This thesis uses ANNs as processing elements for the controllers. Neural
networks are an interesting option for use as controllers for several reasons, and
their capacity to generalize (i.e. to provide a similar response in similar situa-
tion) is certainly one of the most interesting. The main effort when using neural
networks is the amount of training required to perform any given task, and this
can be undertaken using one of the three main groups of training techniques; su-
pervised learning [Kotsiantis, 2007], unsupervised learning [Ghahramani, 2004]
and reinforcement learning (RL) [Sutton and Barto, 1998]. For this thesis, un-
supervised learning methods have been discarded because of their focus on clus-
tering data. Supervised learning has also been discarded, as network learning
would require a set of examples for the network behaviour, and these examples
are not normally available. RL networks, on the other hand, learn from a signal
that indicates to them how well or how poorly they are performing the task. For
the generation of our controllers, we will select a reinforcement training method
known as evolutionary robotics4 (ER) paradigm [Nolfi and Floreano, 2000], due
to the lack of training examples for most of the cases.

1.1.2 Evolutionary robotics

Evolutionary robotics is a research area within robotics that makes use of evo-
lutionary algorithms such as genetic algorithms for the generation of robot con-
trollers. Evolution-based techniques are particularly interesting to work with
as they present a wide range of possible solutions for any given problem. The
evolutionary algorithm performs a search through the range of possible solu-
tions and establishes which solution is the most suitable for the problem at
hand. This solution may at times appear counter-intuitive from an engineering
perspective, but it liberates the engineer from the painstaking task of having to
detail every last aspect of the system. When evolutionary algorithms are used
to generate a robot controller, it is said that the controller has been evolved.

Evolutionary robotics is a good method for the training (i.e., evolution) of
artificial neural networks. The evolutionary algorithm can find the required
weights and structure for the ANN to perform the desired computation without
requiring a set of training examples, which are not usually available in robot
control. Despite its fascinating advances, current evolutionary robotics is still
not powerful enough to evolve controllers for robots composed of a large set of
actuators and sensors, and the current field of evolutionary robotics is mainly
relegated to the domain of wheeled robots performing simple tasks. When the
robot to be controlled is complex in terms of number of sensors and actuators,

4We consider evolutionary robotics a RL method, even if this fact is not accepted by every-
one. For a discussion on whether ER is or is not a RL method, see [Sutton and Barto, 1998],
page 9.
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Figure 1.1: A simple robot (left, the Boebot) and a complex one (right, the
Aibo robot). A simple behavior to move around those robots, like for example,
a wall following behavior, implies, in the case of the Boebot robot, the evolution
of a controller for 4 devices (sensors and actuators). The same behavior for the
Aibo robot implies the evolution of a controller able to handle between 25 and
30 devices (depending on implementation).

the search space for the evolutionary algorithm becomes immense, and the algo-
rithm is unable to find a solution within a reasonable amount of time. Moreover,
when the controller to be evolved is complex in terms of the task, the complex-
ity of the search space may become so high that it could become impossible to
find even an initial partial solution with which to guide the evolutionary process
toward the final solution.

In this thesis, a solution is proposed to these types of problems. A distributed
architecture for the control of complex robots using ANNs has been created. It
makes use of evolutionary techniques to find the most suitable network weights.
The distributability of the architecture makes it possible to partially overcome
the curse of the dimensionality problem usually encountered in evolutionary
processes. The architecture is of a general purpose in the sense that it is in-
dependent of the robot and the task to be solved. The architecture is of the
reactive type [Braitenberg, 1984, Brooks and Stein, 1994]. Additionally, the ar-
chitecture allows for the coupling with a deliberative process [Albus et al., 1987],
what may end in a hybrid approach [Gatt, 1993, Murphy, 1998].

1.2 The thesis in a nutshell

The main goal driving this thesis is the generation of general controllers for
complex robots like the quadruped 16 degrees of freedom (DOF) Aibo robot
(figure 1.1, right). These robots are composed of multiple sensors and actuators
that all need to be perfectly coordinated in order to perform even the simplest of
tasks, such as moving around. This research interest is to implement a method
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1.2. THE THESIS IN A NUTSHELL

for the generation of neural network-based controllers for these types of robots,
and evolutionary robotics is a good framework to work with. Unfortunately, as
will be described in chapter 2, for these robots the evolutionary search space
can be so large and complex that the evolutionary process is not able to find
any solution unless a certain amount of external knowledge is introduced into
the evolutionary process. The introduction of external knowledge is something
that is usually avoided in evolutionary robotics as it constrains the capacity of
the genetic algorithm to find novel solutions for the problem. It can, and will
be argued however, that when robots and behaviours are given and complex,
the use of external information in the evolutionary process is unavoidable.

As will be described in much finer detail in chapter 2, several paths can be
followed in order to overcome the problem of using evolutionary robotics in com-
plex robots performing complex tasks: to develop a better encoding method, to
develop a better genetic algorithm, or to develop better control architectures,
as well as any combination of these, to a certain extent. This research addresses
the problem of developing a better control architecture with the following char-
acteristics:

• Complex robot evolution: it must allow the evolution of controllers for
complex robots, that is, robots composed of a high number of devices.

• Unspecified robot: it has to be independent of the type of robot used, and
must be able to work for wheeled, legged and even static robots.

• Selective information use: the control architecture must allow the selective
introduction of external information into the evolutionary process, and the
introduction of this knowledge must affect only the specific parts of the
controller involved in one particular part of the behaviour.

The capacity for the introduction of external knowledge is one of the key pri-
orities for the architecture; when none of the evolutionary requirements (that
is, the robot body, the robot task and the robot environment) can be relaxed,
and they are complex, then the use of external knowledge becomes mandatory.
It is for this purpose then that the use of selective information is one of the
key requirements of the architecture. When a neural network is evolved, all the
weights are evolved at the same time, and all of them are influenced by the evo-
lution process. In the case of complex controllers however it could be preferred
to affect only a part of the controller with the information, and the selective
information requirement therefore assures that the information introduced will
only very slightly affect the other parts of the controller.

Selective information requirement leads to the selection of a modular con-
troller. A modular controller would have the ability to evolve certain particular
modules whilst the others remain constant. Furthermore, the robot platform
independency requirement also leads to the use of modular controllers as it be-
comes necessary to design a flexible and scalable enough architecture in terms
of the number of sensors and actuators.

The modular approach is not a new approach in the field of neural control.
Modular approaches have however always focused on the behavioural division

5



1.2. THE THESIS IN A NUTSHELL

Figure 1.2: The DAIR architecture, described along the thesis, applies to any
type of robot, independently of its number and type of devices.

of the task, i.e., the generation of modules at the behavioural level. This type of
modularization, however, has yet to prove capable of performing the evolution
of controllers for robots with large amounts of sensors and actuators. Chapter 3
therefore introduces a review of current available neural modular architectures
and proposes an architecture which meets all three preceding requirements. A
new type of modularization at the device level is proposed, where each device
will be associated with its own independent processing module, whilst simulta-
neously maintaining an influence on the rest of modules. Chapter 4 describes
the proposed modularized architecture, named DAIR (Distributed Architecture
with Internal Representation), and explains how it can also easily be combined
with a typical behaviour-based modularization [Brooks, 1991] in a single con-
troller, thus allowing for a deeper level of modularity.

The resulting controller obtained from the DAIR architecture will in fact be
a distributed one, since there is no central component coordinating the smaller
modules. Instead, each module manages its own associated device (sensor or
actuator), controls it, and at the same time keeps it coordinated with the rest
of modules in order to ensure a globally coordinated action. During the evo-
lutionary process, each module is trained to master its associated device, and
along with this process, coordination with the rest of modules is also learned.
Coordination between modules is possible due to the existence of connections
between the modules, which are also evolved (see figure 1.2).
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Due to the fine-grained modularity of the architecture, the evolution of mod-
ules and connections can be performed either in separate processes, or all at the
same time. When either the task at hand, or the robot to evolve is simple,
everything can be evolved at the same time, as will be demonstrated in sec-
tion 4.2.6 and section 4.3. In both cases, the DAIR architecture has proven to
perform better than most of the typical evolutionary architectures, as will be
discussed in chapter 5.

The strongest performance of the architecture however, is obtained when
a complex robot is used, and chapter 6 describes how the DAIR architecture
overcomes the problem of evolving a complex behaviour in a complex robot.
The architecture allows for a modularization of learning by implementing what
we refer to as the progressive design of a controller. The distributability of the
architecture allows for the selective evolution of the different parts of the con-
trollers, resulting at the same time in a coherent behaviour between all of them.
This fact completely avoids the bootstrap problem which prevents the successful
evolution in early stages of the evolutionary process. External information is
used to decide which modules have to be evolved in each particular stage, as well
as under which evaluation function, that is, there is selective knowledge intro-
duction. Due to the architecture modularity degree, groups of modules can be
evolved in the same controller but under different evolutionary processes. Addi-
tional evolutionary stages evolve connections between the modules and obtain
the final complete controller. This method is successfully applied in chapter 6
for the evolution of a walking behaviour in an Aibo robot coordinating 16 DOF
with 28 devices.

Following the description of the progressive design method, a way of exter-
nally influencing the architecture is also shown. At times it may be required
to slightly modify the evolved behaviour, based on the situation outside of the
robot. Chapter 7 provides a method to slightly modify the behaviour of one
controller based on the value of an external tonic signal. The external signal
is received by the modules coming from a completely different controller (any
external control process), and can be used to tune the architecture behaviour to
the different situations that the robot is experiencing. One simple example will
be to modify the speed of the Aibo walking pattern, as will be demonstrated in
chapter 7.

In chapter 8, the way how the architecture functions on the inside will be
analysed. In this chapter, it is observed that the modules that constitute the
controller establish an inner communication system between them, which taken
as a complete vector describes the current state of the robot on a higher level of
description than the raw sensory information. The architecture facilitates the
analysis of the robot’s neural mechanisms, and in particular the identification
of the neural substrates of the internal representation. This means that this
complete internal vector describes similar situations that the robot is experi-
encing with similar values, even if the actual sensory values are different. They
are performing a kind of semantic assignation of meaning to their experiences.
Additionally, the vector state is easily accessible from the outside simply by
looking at the modules output. This fact allows the direct observation of the
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current ensemble state.
Based on these results, chapter 9 concludes the thesis by proposing a method

to integrate deliberation within the architecture. By incorporating this method,
a higher deliberative process would make use of the vector state to deliberate its
current situation, decide what to do next, and communicate appropriate action’s
to the modules using the external control signal. It also includes a discussion
about how the model could be useful for other purposes in AI robotics, as well
as how the architecture can be used to shed light on the mind-body problem.

Additional appendices include additional information on how several parts
of the thesis experiments were performed, from a practical point of view. Ap-
pendix A, for example, will detail the process of building the simulator and the
transfer of information to the real robot system used in this thesis; the Aibo
robot. Appendix B will explain how to interface the evolutionary algorithm
with the simulator for offline evolution, and finally, appendices C through to
F will include a detailed list of the results of all the experiments performed in
chapters 4 to 8, respectively.

1.2.1 Original contributions

We have identified the following points as the main contributions to the thesis:

• Two different types of modularity in neural controllers have been identified
and defined, though to date only one type of modularity has been used
in existing literature related to modular neural networks for robot control
(namely, the decomposition of a global task in terms of required sub-tasks).
This thesis proposes a new type of modularity which is generated at the
level of the robot’s devices. It has been identified at which modular level
each type of modularity works, and how they can be combined to produce
extremely complex controllers in evolutionary robotics.

• Based on this analysis, a distributed neural architecture for the control of
complex robots is defined. The architecture is completely distributed with
no central controller, and provides a method for the control of complex
robots with neural networks. The method provided performs an internal
representation of perception, with this representation being easily acces-
sible from the outside. Internal representation may be used by other
processes for more deliberative purposes, though this point is only lightly
discussed in this thesis.

• A staged method for the generation of behaviours in evolutionary robotics
is introduced, allowing for a modular introduction of the required knowl-
edge. Modular organization is important, as it means that the introduc-
tion of selective knowledge is possible, that is, the introduction of knowl-
edge that may affect only a small part of the controller (as small as a
single module, in fact). We call this process progressive design.

These contributions make our approach interesting from at least three points
of view:
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1. Evolutionary robotics: a novel modular conception based on hardware
elements for the generation of behaviour in autonomous agents is defined.

2. Control engineering: a fully collaborative neural control architecture based
on small modular units with internal representation of perception is de-
veloped.

3. Cognitive systems: a possible answer to the mind-body separation dilemma
by using an internal robotics framework is postulated.

1.2.2 Summary of results

1.2.2.1 Related papers, in journals and books

• C. Angulo, R. Téllez, and D. Pardo, Internal Representation of the En-
vironment in Cognitive Robotics, International Journal of Robotics and
Automation, vol. 24, issue 3, ACTA Press, 2009

• R. Téllez and C. Angulo, Progressive design through staged evolution,
Frontiers in Evolutionary Robotics, I-Tech, 2008

• R. Téllez and C. Angulo, Modularity in artificial neural networks, Ency-
clopedia of Artificial Intelligence, Information Science Reference, 2008

• R. Téllez and C. Angulo, Webots software review, Artificial Life, Volume
13, Issue 3, 2007

• O. Vilarroya and R. Téllez, La madurez de los Aibo, Palabra de robot,
Publicacions de la Universitat de València, 2006

• L. Holh, R. Téllez, O. Michel and A. Ijspeert, Aibo and Webots: simu-
lation, wireless remote control and controller transfer, Robotics and au-
tonomous systems, Volume 54, Issue 6, pp 472-485, 2006

• C. Angulo and R. Téllez, Distributed Intelligence for Smart Home Appli-
ances, Tendencias de la Mineŕıa de Datos en España. Red Española de
Mineŕıa de Datos,Vol: p1-12, 2004

1.2.2.2 Related papers, in conferences

• R. Téllez, and C. Angulo, Embodying cognitive abilities: categorization,
in the 9th International Work-Conference on Artificial Neural Networks
(IWANN’2007). Published in Lecture Notes in Computer Science, Volume
4507, p 781-788, 2007.

• R. Téllez and C. Angulo, Acquisition of meaning through distributed robot
control, in the Proceedings of the ICRA workshop Semantic Information
in Robotics, Rome, 2007
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• R. Téllez and C. Angulo, Tactical modularity for evolutionary animats,
in the Proceedings of the 9th International Conference of the Catalan
Association for Artificial Intelligence, Perpignan, 2006

• R. Téllez and O. Vilarroya, Towards an experiences based artificial in-
telligence (abstract), 50th Anniversary Summit of Artificial Intelligence,
Monte Verita, Switzerland, 2006.

• R. Téllez, D. Pardo and C. Angulo, Comparison of synchronous and asyn-
chronous control modes on dynamic control (abstract), First URBI Work-
shop 2006, Paris, France, 2006.

• R. Téllez, C. Angulo and D. Pardo, Evolving the walking behaviour of a 12
DOF quadruped using a distributed neural architecture, 2nd International
Workshop on Biologically Inspired Approaches to Advanced Information
Technology (Bio-ADIT’2006), Osaka, Japan, 2006. Published in Lecture
Notes in Computer Science, Volume 3853, p. 5 - 19, 2006

• R. Téllez, C. Angulo and D. Pardo, Completely neural architecture for the
general control of autonomous robots, European Symposium on Nature-
inspired Smart Information Systems, Albufeira, Portugal, 2005.

• R. Téllez and C. Angulo, A distributed architecture for sensory-motor
coordination (abstract), in the 3rd International Symposium on Adap-
tive Motion in Animals and Machines (AMAM’2005), Ilmenau, Germany,
2005.

• R. Téllez, C. Angulo and D. Pardo, Highly modular architecture for the
general control of autonomous robots, in the 8th International Work-
Conference on Artificial Neural Networks (IWANN’2005), Vilanova i la
Geltrú, Spain, 2005. Published in Lecture Notes in Computer Science,
Volume 3512, p 709, 2005

• R. Téllez and C. Angulo, Evolving cooperation of simple agents for the
control of an autonomous robot, in the Proceedings of the 5th IFAC Sym-
posium on Intelligent Autonomous Vehicles (IAV04), Lisbon, Portugal,
2004

1.2.2.3 Invited talks

• Distributed neural control for the Aibo robot, University of Yamaguchi,
Japan, 2006

• Tactically distributed sensory-motor coordination, IDSIA, Switzerland,
2006

• Towards a society of mind for autonomous robots, Sony Computer Labo-
ratory, Paris, France, 2005
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1.2.2.4 Media coverage

• Radio interview, Radio Barcelona, 15-IV-2006

• Press review of the research, El Pais, 29-IX-2005

1.2.2.5 Awards

• Robots i evolució. Winner of the honourable mention award at the 1st
ACCC competition for the spreading of scientific research, 2003.

1.2.2.6 Teached summer schools

• Aibo programming summer school, University of Vilanova, 2005

• Aibo programming summer school, University of Vilanova, 2004

1.2.2.7 Co-directed master thesis

• Distributed control of wheeled robots, by Javier Collado, Technical Uni-
versity of Catalonia, 2006

1.2.2.8 Stages

• Research stage at EPFL, Switzerland, 3 months in 2005 for the develop-
ment of a tonic control of the Aibo walking

1.2.2.9 Co-organized workshops

• Emergent Behaviors and Cognition in Embodied Systems, IWANN Special
Session, 2007
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It is absolutely safe to say that if

you meet somebody who claims

not to believe in evolution, that

person is ignorant, stupid or insane

Richard Dawkins 2
Evolutionary robotics

Chapter 1 stated our interest in using evolutionary robotics methods for the
training of artificial neural networks. This second chapter is an analysis of
the selected framework, and is organized as follows: firstly, techniques from
the ER approach to be used for ANN training will be described in sections
2.1 to 2.4. In section 2.5 the limitations of the current ER framework for our
particular application will be described, and finally, in section 2.6, a solution to
the limitations described is proposed.

2.1 Introduction

Evolutionary robotics is a general framework for the automated design of con-
trollers for autonomous robots. It reproduces in robot controllers the Darwinian
principle of selective reproduction or natural evolution; by accumulating small
changes [Dawkins, 1987] in a progressive development. ER uses genetic and
evolutionary algorithms to develop control programs for autonomous robots. A
robot control system is represented as an artificial chromosome that progres-
sively updates throughout its evolutionary process until it successfully accom-
plishes the desired robot behaviour, in this way simulating genetics and natural
selection laws. Since a robot controller is based on ANNs as processing elements,
in this thesis artificial chromosomes will encode ANN weights, so that network
connections of ANNs are evolved.

Evolutionary robotics tends to focus on processes for building task-oriented
controllers rather than model-based controllers, and the designer is therefore
not required to specify precisely how the controller should work in each and
every potential situation [Nolfi and Floreano, 2000]. Furthermore, ER stresses
the importance of an agent possessing a body, and that this body be situated
in a physical environment. During the evolutionary process the artificial system
autonomously develops its own skills through close interaction with its environ-
ment. Interaction with the environment makes it possible to evaluate how well
or how poorly a robot controller, expressed in the form of a genetic code, is
adapted for the task at hand.

Evolutionary robotics shares several similarities with the well known behaviour-
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based robotics framework [Arkin, 1998] since the role played by the environment
is extremely important in both approaches. However, while in behaviour-based
robotics the engineer carefully decides beforehand on the generation of a set
of basic behaviours associated with the robot task, in evolutionary robotic be-
haviours emerge as a result of the self-organizing process which is driven by a
fitness function.

Generally speaking, the term emergence refers to behaviour that has not
been explicitly programmed into a system or agent [Pfeifer and Bongard, 2007].
The evolutionary process evolves the required knowledge for solving the task
through experience, and self-adjusts its control system to meet the specific de-
mands of the domain. This means that if avoiding obstacles is a necessary
component for good performance, the genetic algorithm will select those net-
works which are best suited to avoid obstacles [Gomez and Miikkulainen, 1996,
Moriarty and Miikkulainen, 1996b].

2.2 The evolutionary process

Given a robot, a working environment and a task to be solved, the evolution-
ary process will attempt to find the most suitable robot controller with which
to perform the required task in the specified environment. The evolutionary
process achieves this goal by acting in the following way (see figure 2.1):

1. To begin with, the designer creates a starting population of chromosomes
with initial random values. Each chromosome encodes a possible control
system for the robot in some manner. These chromosome-encoding con-
trollers are referred to as genotypes, and the specific manner in which
a genotype encodes the robot control system is known as the encoding
scheme. Encoding scheme selection is currently an intensely researched
subject due to its high impact on the success or failure of the evolutionary
process. From this initial step a pool of random potential control systems
is therefore obtained.

2. Next, one control system is randomly selected from the pool of genotypes,
and transformed into the control system of the robot. The resulting trans-
formation of the genotype into a controller is referred to as the phenotype,
and this transformation is called genotype-to-phenotype mapping. The
phenotype is then installed in the given robot for its control.

3. The robot is then evaluated within the given environment. It will move
around freely and manipulate its environment as specified by its controller.
It will exhibit a behaviour according to what is specified by the controller,
the robot body, and what it encounters in its environment. After a pre-
determined amount of time, referred to as evaluation time, the robot will
be stopped. This is the most time-consuming stage of the evolutionary
process, and the potential variation in the time required for this stage
can be several orders of magnitude, making the design of this phase very
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important. A good design can reduce evolution time from days to minutes,
since thousands of tests could potentially be required for the evolution of
just one single controller.

4. Task performance is evaluated by a cost function as defined by the de-
signer, and is referred to as fitness function. Fitness function automatically
calculates how well or how poorly the robot performs the required task.
When the process is started the robot’s behaviour can be very chaotic due
to the genotypes having been randomly created, and the resulting fitness
value may be very low. It is expected that the fitness value will increase
as the evolutionary process progresses and new generations are tested.

5. Steps 2 to 4 are repeated for all the genotypes in the pool, and an or-
dered list with the score obtained by each genotype is generated. All the
genotypes are usually tested more than once due to the random nature of
the test, and the genotypes final evaluation score is then calculated as the
mean average of its testing times.

6. Based on the ordered score list the best genotypes (parents) are allowed
to be combined with each other by using genetic operators (duplication,
crossover and mutation, amongst others), giving birth to a new popula-
tion (generation) of genotypes (offspring). Offspring are added to the
genotypes pool and the genotypes with the lowest fitness values are au-
tomatically deleted from the pool, ensuring a pool with the best possible
genotypes.

7. Once a new generation of genotypes has been created the evolutionary
process is repeated from step 2 for the number of generations defined by
the designer. The evolutionary approach assumes that the mean fitness
value obtained by one generation will improve as the number of generations
increase, and a good controller for the task will eventually be obtained.

In a general evolutionary process, evolution begins with an initial random
population of different solutions with a maximum diversity. As the process
evolves, the random population will converge upon a solution, and the subse-
quent genetic diversity of the pool of solutions will decrease. At some point
an equilibrium is attained, and no further increases in the fitness value are ob-
served. This situation is known as stagnation, and marks the point where the
diversity of the population is at its lowest value. At this point either the evolu-
tionary process should be stopped, or the probability of the mutation operator
should be increased.

Precisely, how to initialize the evolutionary method is yet another funda-
mentally important issue. Randomness when generating the first generation of
genotypes can potentially imply that a large amount of time could be required
before any useful behaviours for the task emerge. Furthermore, in the case of
a very complex robot it may not be possible for the evolutionary process to
generate a growing fitness process, due to the fact that all the initial genotypes
obtain zero fitness values in every evaluation. A classic example of this is when
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Figure 2.1: Schematics of the evolutionary robotics process
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Figure 2.2: Simulated and real Aibo robot.

attempting to evolve the walking behaviour of a humanoid, and all the initial
solutions result in the robot throwing itself to the ground, implying that their
fitness is zero1. Hence, no improvement in terms of fitness value will be observed
through generations, and the walking behaviour will not evolve. This problem is
known as the bootstrap problem [Nolfi and Floreano, 1998], and though several
solutions have been proposed the problem has yet to be entirely resolved (see
section 2.5).

A third comment regarding the evolutionary process is that algorithms de-
velop required behaviours for the task in a self-organizing process, that is, en-
tirely free of human intervention. Acting in this way, fresh and non-intuitive
(unbiased) good solutions can be found. Bias is understood as any type of
knowledge that the designer includes in the fitness function that results in the
evolutionary process driving its search towards a specific solution. As will be
seen later, we firmly defend the fact that obtaining an unbiased controller is
only possible under certain simple circumstances.

2.2.1 Evolution in simulated and real robots

Every time that a generation of controllers is tested in the evolutionary loop,
the controller is loaded in the robot and the robot is left to interact with the
environment designed for the task while running its controller. This interac-
tive test step can be performed in both simulated and real robots, and each
approach carries its own advantages and drawbacks. When done in simulation,
the process is referred to as off-line evolution. Off-line evolution is used mainly
because it is inexpensive, avoids the need to concentrate on robotic engineering
issues, and above all it allows for a much faster evolution; what would take
months in a real robot could take mere minutes in a simulator, since the entire
evolutionary process can be automated and executed at high speed. The draw-

1Moreover, initial random behaviours can make the robot demonstrate behaviours that
may threaten its integrity when the evolution is performed in a real robot.
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back with simulations is that they cannot completely model the robot and its
environment, - because no such thing as a perfect simulator exists. Hence, in
some cases, results obtained in the simulator are not valid for the real robot, -
particularly in cases where the genetic algorithm takes advantage of unmodeled
aspects of the simulator. This type of situation could lead to problems when
transferring solutions from the simulator to the real robot. Differences between
the simulator world and real world are known as the reality gap, and this prob-
lem intensifies as the complexity of the robot, its task and its environment
increases. In an attempt to resolve the reality gap problem, Jakobi defined the
concept of minimal simulation [Jakobi, 1998]. This concept advocates that the
simulation be strictly limited to those aspects of the robot and its environment
that are absolutely necessary for the task at hand. The rest of aspects should
be modeled as noise, resulting in the generation of a controller that does not
depend on those features. The result of simulations that implement the concept
of minimal simulation is a far faster simulation, (as they do not have to simulate
everything), as well as a robust simulation when crossing the reality gap and
transferring the controller to the real robot. It must be noted however that to
model a simulation in such a manner is not at all a straightforward task.

Physical robots are used during the evolutionary process when the situation
is so complex that it cannot be modeled in simulation. This process is referred
to as on-line evolution. Its main drawback however, is that on-line evolution
takes longer than off-line evolution by several orders of magnitude. Further-
more, additional effort is required to recharge batteries and fix robots. Due to
these drawbacks, and in order to obtain the best of both worlds, a combination
of the two methods can be used. In such a case a limited simulation of the robot
and the environment is used in the first stage (usually using minimal simulation
criteria), and the robot is evolved off-line, thereby generating a controller for
the simulated robot. Following this, in the second stage, this controller is trans-
ferred to a real robot and, if necessary, it (the controller) is on-line evolved for
several generations. The second evolutionary stage allows controller modifica-
tions to better prepare it for the real world. Present day simulators are suitable
for this later approach with off-the-shelf solutions. One example is the commer-
cial Webots simulator 2 developed by Cyberbotics. Webots provides both an
already simulated environment as well as a solution for transfer to real robots for
a long list of commercial robots [Michel, 2004, Téllez and Angulo, 2007]. This
thesis uses both on-line and off-line evolutionary processes with Webots soft-
ware. Additional information comparing simulation approaches and real-robot
approaches can be found in [Walker et al., 2003].

2We have contributed to this program through the development of the Aibo robot simula-
tion [Holh et al., 2006]. This software contribution was used in further experiments, described
in chapters 4, 5, 6, 7 and 8. A complete description of our development can be found in ap-
pendix A.
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2.2.2 Control architectures

A control architecture specifies how to organize the robot control programme.
Within the evolutionary robotics paradigm, architectures can be found based
on genetic programs [Koza, 1991], classifier systems [Holland, 1987], and neural
networks [Nolfi and Floreano, 2000]. In principle, evolutionary robotics is ca-
pable of evolving any control architecture that can be replicated and mutated.
The question is then; what would be the most suitable type of architecture to
be used within evolutionary robotics?.

In the case of genetic programming, Lisp-like programmes were a very at-
tractive option in the past due to the treelike structure, which ensures an espe-
cially robust application of genetic operators [Steels, 1994, Olmer et al., 1996,
Nordin et al., 1998]. Classifier systems are based on a discontinuous set of dis-
crete rules, and have been successfully applied in [Colombetti and Dorigo, 1992,
Dorigo, 1995] to several examples. It is difficult however to demonstrate that
this rigid system is the most appropriate for a complex robot.

Artificial neural networks on the other hand present some very interesting
features for evolutionary robotics, and are therefore the preferred option of
designers.

• ANNs provide a smooth search space in which to search for a suitable
controller, and gradual changes in the parameters of the net, having been
evolved, correspond to gradual changes in the controller behaviour.

• The same network structure can be used for controlling different robots
performing different behaviours by simply altering the value of the net-
work’s weights accordingly. A good example of this are the experiments
shown in [Nolfi and Floreano, 2000], which in most cases use a simple
feedforward neural network, - even if the behaviours required from the
robots are very different. Furthermore, this implies that the same encod-
ing scheme can be used independent of the functionality of the control
system.

• Neural networks allow for the smooth integration of other adaptive pro-
cesses with artificial evolution, such as supervised or unsupervised learning
[Floreano and Mondada, 1996, Nolfi and Floreano, 2000].

• Evolved behaviours are mainly low-level behaviours which require a close
coupling between the sensors and the actuators of the robot. Artificial
neural networks provide a straighforward mapping between sensors and
motors [Husbands et al., 1995, Nolfi and Floreano, 2000]. Furthermore,
they can easily accept continuous input signals, and generate either con-
tinuous or discrete output answers, depending on the transfer function
chosen.

• Artificial neural networks are robust to noise, and oscillations in individual
input values do not highly affect output generated by the net since output
is a combination of several signals. This feature makes ANNs especially
appropriate for use in real robot environments.
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• Due to the methaphore they represent, ANNs allow the implementation
of ideas derived from biology, making bio-inspiration a good source of
inspiration for the generation of controllers [Billard and Ijspeert, 2000,
Watson, 2002b, Nakada et al., 2004]. Moreover, the other way round is
also valid, and controllers based on neural networks may well help to gen-
erate new hypotheses on the workings of biological systems [Ijspeert, 2001,
Hallam and Ijspeert, 2003].

When the evolutionary process evolves ANN-based controllers it is referred
to as neuro-evolution. Neuro-evolution is then the use of evolutionary algorithms
to evolve neural networks that will later be used as controllers for robots. For
robot control, evolutionary robotics is especially advantageous in that it does
not require training examples for the evolution of the nets. In addition, evolu-
tionary robotics has no restrictions whatsoever regarding the type of neural net-
work to be used. Examples include: perceptrons [Floreano and Mondada, 1994,
Lund and Hallam, 1996, Nolfi, 1997, Dorigo et al., 2004], continuous-time neu-
rons [Hopfield, 1984, Yamauchi and Beer, 1994, Beer, 1995, Gallagher et al., 1996,
Hallam and Ijspeert, 2003, Seys and Beer, 2004, Téllez et al., 2006], and recur-
rent neural networks [Floreano and Mondada, 1996, Nolfi S., 2000]. As a mat-
ter of fact, ANN structure can also be included in the evolutionary process
[Gruau, 1994, Gruau, 1995, Whitley et al., 1995, Gruau et al., 1996, Gruau, 1997].

2.3 Encoding schemes

The encoding scheme is responsable for specifying the way the phenotype is
encoded in the genotype. Encoding scheme selection is a vitally important issue
since it can be used to drive the evolutionary search towards areas that are
more likely to contain a solution [Stanley and Miikkulainen, 2003]. In most en-
coding schemes genotypes are made up of strings of values which represent the
parameters of the phenotype to be evolved. These values can be expressed as
either binary values or real numbers. There are a few exceptions however, and
they encode other information such as primitives [Hornby and Pollack, 2002,
Hornby, 2003, Hornby et al., 2003]. Genotypes can encode many of the phe-
notype’s characteristics, including control architecture, robot morphology and
even rules on how the genotype-to-phenotype mapping should be performed.

When applied to the evolution of neural networks, two classes of encoding
methods exist: direct encoding; where the genotype encodes all the values of
the connections of the neural net, those are, the weights, in a straight way,
and indirect encoding; where the genotype does not encode the net weights,
but a list of developmental rules, each rule describing how the network must be
constructed. Additionally, a second type of classification can be made, based
on size: encoding schemes for fixed size networks, and encoding schemes for
networks that vary in size. Throughout this thesis we will use the simplest case
of encoding, that is, direct encoding with fixed size, and encoded values will be
strings of real numbers encoding the weights of the nets.
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2.3.1 Genetic algorithms and genetic operators

In order to evolve a robot controller, a genetic algorithm and genetic operators
must be selected. The genetic algorithm (GA) defines the steps that determine
how the different processes interact, as well as how and when the genetic oper-
ators will be applied. Genetic operators define the rules on how to obtain the
offspring genotypes from the parents ones.

The GA specifies how the process by which genotypes are selected from the
pool of available genotypes to generate offspring works, as well as the process by
which the new offspring are introduced back into the pool to replace the old ones.
A good introduction to genetic algorithms can be found in [Mitchell, 1996]. GAs
have been used for solving various different types of problems, with ER being
only one of its applications. Several issues need to be taken into account when
using genetic algorithms for evolutionary robotics :

• Performance of different genetic algorithms has been compared in their
application to standard tasks like the pole-balancing problem described in
[Gómez and Miikkulainen, 1999, Stanley and Miikkulainen, 2002] or the
predator-prey games [Yong and Miikkulainen, 2001]. Results show how-
ever that there is no GA that is the best for all types of problems, and
although certain GA perform better than others in the resolution of certain
tasks, this does not imply that GA is the best solution for evolutionary
robotics in a general sense.

• One difference between robotics and any other field employing GA is that
robotics has to handle the noisy values that are provided by sensors or
sent to actuators. This implies that one controller can behave differently
on two different occasions, and subsequently obtain contrasting fitness val-
ues. A GA therefore needs to take this fact into account when selecting
the optimal controllers for reproduction. This obstacle is generally over-
come by testing each and every controller several times in different initial
situations, and then calculating its fitness as a mean average.

Some interesting GA’s for neuro-evolution include the pioneer SANE algo-
rithm [Moriarty and Miikkulainen, 1996a, Moriarty, 1997]; Enforced SubPopu-
lations (ESP) [Gomez and Miikkulainen, 1996, Gómez and Miikkulainen, 1999],
and derivatives: multiagent-ESP [Yong and Miikkulainen, 2001], Hierarchical-
ESP [Gomez and Schmidhuber, 2005]; NEAT [Stanley and Miikkulainen, 2002];
GENITOR [Whitley et al., 1993]; or EVOLINO [Wierstra et al., 2005], to name
but a few. The ESP algorithm will be used in the experiments described in
this thesis. Additional genetic algorithms can be found in [Barto et al., 1983,
Anderson, 1989, Watkins and Dayan, 1992, Pendrith, 1994, Whitley et al., 1995,
Gruau et al., 1996, Sutton and Barto, 1998, Meuleau et al., 1999].

Genetic operators describe the way in which new offspring genotypes are ob-
tained from parents. Genetic operators are responsable for the genetic diversity
of the population as well as the convergence rate. One of the more commonly
used operators is the crossover operator, which combines two parent genotypes
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Figure 2.3: Crossover and mutation operators

with two offspring by selecting a random point along the genotype around which
genetic material is swapped between the two parents. Another typical operator
is mutation, which introduces random changes into the genotype. This operator
is usually used with a low probability value that decides whether any element
of the genotype needs to be changed after crossover. Changes introduced by
the mutation include the switching of its value for binary encodings, or the ad-
dition of a small amount randomly distributed around zero for encoding with
real numbers.

2.3.2 Fitness functions

The fitness function rewards a controller based on the performance of the robot
running such a controller while attempting to solve the problem at hand. It
is an evaluation score of the controller’s performance. Evaluation is condensed
in the form of a mathematical function that calculates how well or how poorly
the robot has performed the task (using the present controller), using available
data such as the status of both the robot and the environment.

The way a fitness function is designed depends on the robotic setup for
the task. If the evolutionary process is performed in simulation then all the
parameters that may be required for measuring the correctness of the controller
are available, - since everything can be measured. For real robot evolution fitness
evaluation can be more complex, as hardly any parameters are directly available
to automate the process. In general, there is no principled way of designing a
fitness function, and its generation therefore entails a trial-and-error process.

Evolutionary robotics aims for fitness functions specifying a high level de-
scription of the required robot task. Fitness should include as few clues as
possible as to how to achieve successful behaviours for this task. Fitness func-
tion defines the task that one wants the robot to complete, but not how it is to
be performed. This freedom has in many cases lead to remarkably interesting
and surprising solutions; for example in the evolution of walking quadrupeds, a
technique was evolved that allowed the robot to throw itself through the air in
order to advance [Reeve, 1999].
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Figure 2.4: Three dimensional representation of a fitness landscape.

The fitness landscape is a representation of the search space of an evolu-
tionary algorithm, given a fitness function. It associates fitness values with
corresponding genetic traits (see figure 2.4). The dimensionality of this land-
scape corresponds to the number of parameters to be evolved. It can also be
called the search space, referring to the fact that the evolutionary algorithm is
moving through that space whilst searching for the most suitable combination
of genetic traits to obtain the optimal fitness value.

When the robot is simple, the algorithm can progressively find solutions
which are a little closer to the desired solution in each consecutive evolutionary
step . Each evolutionary step builds upon the previous one, thus continually
obtaining better solutions. However, in cases where the fitness landscape is
massive due to the complexity of the robot or the task, an algorithm cannot
find partial solutions to solve the task, and can therefore not improve through
succesive generations (better known as the bootstrap problem, as defined in
section 2.2). In these cases, a possible solution is to add terms to the fitness
function; based on the additional knowledge provided by the designer. These
added terms act as the drivers of the evolutionary process, indicating where a
partial solution may be located. They can also smooth out the fitness landscape.
The addition of fitness terms provides clues for the algorithm to find the solution
and restricts the search space to regions that the designer knows contain a
solution. When this sort of situation occurs, the fitness function is said to
contain bias.

While evolutionary robotics looks promising, it is not the golden solution to
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robot control generation. In chapter 6 it is postulated that the introduction of
bias into the fitness function is unavoidable if so many constraints are imposed
on the evolutionary process. These constraints include: the morphology of the
robot, the task to be solved and the environment.

2.4 Improving the initial evolutionary methodology

Several modifications to basic evolutionary processes have been proposed by
different researchers to improve basic evolutionary methods and also to allow
the evolution of more complex behaviours. We have listed a few of them here.

2.4.1 Incremental evolution

Incremental evolution (or incremental learning) is a technique that proposes
to evolve neural network training by performing successive teaching steps with
an increase in the complexity of the task being taught on each successive step.
The use of incremental evolution has been proposed as a solution to reduce
large search spaces [Elman, 1991, Gomez and Miikkulainen, 1996]. The network
controller is first trained to perform a simple task; t1 related to the final global
task tgoal but in a simpler form. When the network has learnt the initial task,
a second task t2, more complex than t1, though still simpler than the goal task
tgoal is then taught to the network.

These steps are performed until the final global task tgoal is successfully
learnt. It is worthwhile to note that in incremental evolution there are two dif-
ferent kinds of tasks: evaluation tasks, which are used to evaluate the network’s
reproductive fitness ; and the goal task, which the network is evolved to per-
form. The goal task is the culmination of a series of less demanding evaluation
tasks {t1, t2, ...., tgoal}, where the set of tasks is ordered from simpler to more
complex. This form of learning can be considered as an appropriate model of
continual learning.

Each evaluation task to be learnt by the neuro-controller is expressed in
terms of a different fitness function. Hence, after an evaluation task has been
mastered by the controller the fitness function is changed to that of the next
evaluation task. This approach has worked well with a simple robot per-
forming both simple and complex tasks like in [Gomez and Miikkulainen, 1996,
Gómez and Miikkulainen, 1999, Yong and Miikkulainen, 2001, Islam et al., 2001],
though successful application of this approach for use in a complex robot has
not yet been reported.

In [Doncieux and Meyer, 2004] an alternative to incremental evolution has
been proposed. Rather than using the existing knowledge on the task to evolve
the generation of a set of tasks with increasing complexity, the authors pro-
posed the use of knowledge to guide the evolution in two directions: firstly, the
evolutionary process evolves modules instead of neurons and connections, and
secondly, information is provided to suggest to the algorithm which connections
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are likely to be useful in the final controller. This method has been successfully
applied to the control of a simulated lenticular blimp.

More recently, new approaches based on the basic incremental evolution idea
have been presented, like the use of exaptation [Graham and Oppacher, 2007,
Mouret and Doncieux, 2009a], multi-subgoal evolution described in the work of
[Mouret and Doncieux, 2008] or behavioral robotics [Mouret and Doncieux, 2009b].

A kind of incremental evolution, divided into stages, will be used in this
thesis.

2.4.2 Co-evolution

In most evolutionary robotics works, the evolved controller is used to guide a sin-
gle robot or agent. When several agents working together need to be controlled,
it becomes necessary to use a co-evolutionary method, i.e. to evolve a controller
for different roles in a common task, - either in a single population for all the
agents, or in multiple isolated populations [Yong and Miikkulainen, 2001]. In
co-evolution, controllers for two or more robots are evolved simultaneously in
an open-ended manner whilst they interact with each other. Interaction will
imply that changes in the behaviour of one robot drive further adaptation in
the other.

Species interact with each other within a shared domain model in either
a cooperative, or a competitive relationship. Co-evolution therefore evolves a
group of agents in order to show them how to cooperate or compete to achieve
a common goal while every agent has its own and different vision of the whole
system. In competitive co-evolution, the role of each agent is against the role of
the other agents (one agent’s loss is another agent’s gain), while in cooperative
co-evolution agents share rewards and penalties for successes and failures. In
competitive co-evolution, each agent receives its own personal score based on
a fitness function which is particular to each agent. However, if a cooperative
controller is required, a training algorithm will reward all the agents with the
same score. A single fitness function will usually be used to reward all the
agents.

Problems in which the solution can be divided into subparts are the best
suited to make use of co-evolution. Subparts are evolved within their own
population, each contributing as best they can to the final solution. Every
subpart interacts and cooperates with the others in a combined effort to most
effectively solve the problem.

The most widely studied case of co-evolution is the predator and prey game
[Koza, 1991, Reynolds, 1994]. In this game, one robot, - acting as the predator,
tries to capture the other robot - which acts as the prey. The prey uses evo-
lutionary procedures to generate better solutions to avoid the predator, whilst
the same evolutionary process simulaneously tries to generate better catching
strategies for the predator. This co-evolutionary process will produce increas-
ingly difficult challenges for each of the robots, while also progressively increas-
ing the performance of each of the robots. This phenomenon is known as the
arms race, [Dawkins and Krebs, 1979] and may lead to highly proficient robots
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Figure 2.5: Sequence of the predator and prey game where two robots were
co-evolved in a competition. The robot with the green top (the prey) tries to
avoid the robot with gray box on top (the predator).

of both types [Nolfi and Floreano, 1998]. It cannot be guaranteed that this pro-
cess will indefinitely increase the robots performance however, as cycling loops
may appear (this refers to when the robots repeatedly cycle through the same
solutions). In [Floreano et al., 2001] it is suggested that co-evolution may help
to solve the bootstrap problem, that is, the inability to gradually increase the
performance of the controller due to the complexity of the task.

Several examples of co-evolution for the evolution of a simulated predator
and prey game can be found in [Yong and Miikkulainen, 2001]. Real Khepera
robots were used in [Floreano et al., 2001] for the evolution of the same game.
In [Ostergaard and Lund, 2003] robots were co-evolved to play robot soccer, -
even competing with an opposing team. In [Potter and Jong, 2000] co-evolution
was used to evolve co-adapted subcomponents. Their co-evolutionary architec-
ture is called cooperative co-evolution, and consists of the evolution of different
subcomponents, each one with its own population, which interact in a shared
environment in order to solve a specific task. The main interest of this archi-
tecture is that the number of subcomponents required for solving the task is
not determined beforehand, but that it emerges based on a stagnation criteria.
Unfortunately the authors have only applied this architecture to the resolution
of numerical problems. The same principle of subcomponents will be used in
chapter 4 of this thesis for the evolution of the DAIR architecture.

2.5 Evolution of ANNs in complex robots

The focus in this thesis is on the use of evolutionary robotics for the gener-
ation of controllers in complex robots, which is to date an unresolved issue.
We define the complexity of a robot by the number of sensors and actuators
that have to be coordinated, and it follows then that the complexity of a robot
increases correspondingly as its number of devices increase (sensors and actua-
tors). This definition is based on the description of a complex system provided
in [Simon, 1969](page 218, 2006 Spanish edition):

[...], by complex system I understand the system composed of a
big number of different parts which maintain a series of interactions
between them.
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This thesis focuses on neurocontrol in complex robots, that is, robots with
dozens of devices. However, we observe that ER currently only achieves good
results for simple (mainly wheeled) robots, that is, robots with less than ten
devices (see all the examples shown in [Nolfi and Floreano, 2000]). The aim
of this thesis is to provide a practical solution for complex robots controlled
by neural networks; using evolutionary robotics as the training method. To
date, only a small number of researches have applied ER to complex robots,
and the solutions found are very limited and particular to the robot used. This
thesis searches instead for the most general (which can be applied to any robot)
and unbiased (which can find novel solutions) possible method. The reason
for failing to apply ER to complex robots is primarily that the search space
that the evolutionary algorithm has to face is huge (due to the high number of
parameters to evolve; this dictated by the number of devices to control). Hence,
firstly, it is difficult to find a solution through small changes, and secondly, the
bootstrap problem prevents the generation of simple solutions with minimum
fitness values at the beginning of the evolutionary process that could guide the
evolutionary path towards the final solution.

Several solutions have been proposed to generate complex behaviours in
complex robots, though none to date are entirely satisfactory. The use of incre-
mental evolution to reduce the large search space has worked well for complex
tasks in simple robots [Islam et al., 2001], but successful use in a complex robot
has not yet been reported.

In [Nelson et al., 2002, Nelson et al., 2003b, Nelson et al., 2003a] the use of
a fitness function with two modes was proposed: the first mode rewards the
controller when it is not able to complete the task by using a subjective measure
(completely determined by the designer) of the uncompleted task. The second
mode only provides a reward when the task is achieved. A similar approach was
also proposed in [Nolfi, 1997] for the generation of a garbage collector controller,
or for the generation of a hand able to grasp things [Bianco and Nolfi, 2004].
The approach worked well in each case, given that all the robots were wheeled
robots. As will be shown in chapter 6, this type of approach doesn’t work when
the first mode is not easily scorable (due to the complexity of the robot).

In [Doncieux and Meyer, 2004] an alternative to incremental evolution to
guide the evolutionary process, - based on using the knowledge that the designer
has about the task to evolve, has been proposed. The authors successfully
applied their method to a blimp with 12 devices, even if the application of the
same method to more complex robots seems difficult. Experiments performed in
chapter 6 with an Aibo robot willing to walk have constated this point, showing
that even allowing as much guidance as needed for this Aibo experiment, it
was still impossible to evolve even simple initial solutions if only a straight
monolithic approach was used.

According to the analyzed approaches, the bootstrap problem is the biggest
challenge when dealing with complex robots, and only partial solutions based
on special tricks for the particular controller to evolve exist. An example of
this is a walking behaviour is evolved for a biped in [Mojon, 2004]; initializing
the weights of the nets with small values, and allowing the robot to obtain a
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few controllers that don’t fall down at the first generations. In Reeves’ work,
[Reeve, 1999] walking quadrupeds have been evolved using symmetry to reduce
the search space and avoid useless initial controllers.

Another solution that has been proposed to solve the bootstrap problem is
co-evolution [Nolfi and Floreano, 1998], but no applications for complex robots
currently exist, as was pointed out in [Doncieux and Meyer, 2004].

A possible solution for both problems is the simultaneous evolution of both
the robot body and the neural controller [Sims, 1994, Funes and Pollack, 1999,
Lipson and Pollack, 2000, Hornby and Pollack, 2002, Bongard and Pfeifer, 2003,
Muthuraman et al., 2003, Muthuraman, 2005]. However, these approaches lack
the ability to drive the evolutionary path of the body towards a predetermined
body structure. Furthermore, these approaches usually make use of small errors
introduced in the evolutionary system, generating physically useless robots.

By introducing restrictions into the fitness function that are based on pre-
vious knowledge of the situation, possible morphologies to be evolved can be
constrained to the ones that are interesting for the given robot body. As was
shown in [Muthuraman, 2005] this is a good approach for the complexification
of controllers, though even if the author applied it to the evolution of other tasks
it remains difficult to see how it could be applied to any robot for any task.

Ontogenic approaches to the evolution of morphology and control system also
appear promising for the evolution of a complex behaviour in a complex robot
[Bongard, 2003], even with its lack of directness of the evolutionary process
towards a given and fixed body.

2.6 Proposed solution

From our point of view that there are several promising looking methods for
the resolution of the control in a complex robot problem, namely: development
of new encoding schemes, body evolution, use of learning, and design of new
architectures.

New architectures adopt an engineering approach to the problem, and may
be better adapted for robots once a suitable architecture has been engineered.
After a few preliminary studies, and results as promising as those obtained in
[Angulo and Téllez, 2004, Téllez and Angulo, 2004], it was decided to study the
problem of architecture design. The solution has to be universal in terms of both
robot structure and task to solve.

2.6.1 Use of selective bias

Whilst searching for a solution for the evolution of complex neural controllers,
it was observed that to date no report of the evolution of a neural controller in
a complex robot without using human knowledge in the process exists, that is,
without a bias being introduced by the designer. Even though bias is not usu-
ally desired in ER, it does seem unavoidable. This research suggests that this
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necessity for bias arises when the artificial evolutionary algorithm tries to re-
produce the effects of natural evolution under unfair conditions. While natural
evolution gradually evolved at the same time as the animals body plan, sen-
sors and actuators, nervous system, and even environment and needs, artificial
evolution tries to evolve the nervous system of a robot for a fixed given body,
given group of sensors and actuators, and within a given complex environment
and particular task required. A similar observation was stated in [Simon, 1969]
(page 57, 2006 Spanish edition):

Species within an ecosystem adapt to an environment where
other species evolve at the same time. The evolution and future of
those systems can only be understood from the knowledge of their
histories.

It is observed that under those same conditions, and if the robot is complex,
the evolutionary process is unable to find a good enough controller within the
huge search space. Hence, we claim that bias is necessary under those tight
evolutionary conditions. Bias can be introduced in the process to act on different
parts, the most common being the introduction of information in the fitness
function. The introduction of information in the fitness function drives the
evolutionary search towards a subspace where the designer assumes there is a
solution, acting as a reductor of the search space dimensionallity. This is the
preferred place to introduce bias, since it is very simple to modify in case the
evolutionary results are not as good hoped for.

The introduction of knowledge into the fitness function does not, however,
guarantee the evolution of a good enough controller. Incorporating too much
human design in an evolutionary process may end in the solution implemented
not being that good from a generalist point of view. Partial solutions to this
problem, described in the previous section, also attempted to introduce bias into
the process (some of them in the fitness function). Unfortunately the solutions
were not completely successful as the fitness information affected the entire
controller. We propose instead the use of a mechanism where the controller is
evolved using different fitness functions, each one affecting only selected parts
of the controller. Each fitness function will contain the information bias that
should affect only that part of the controller. The bias is therefore, selective
in its affection. The controller has to be developed in several stages, and each
stage will have separate parts involved in the process. We refer to this process
as staged evolution.

2.6.2 Staged evolution

The proposed evolutionary process is defined as staged evolution. In staged
evolution, incremental evolution is used at each stage to modify both the fitness
function and the neural structure to be evolved at that stage. This implies
that every stage will have a change in both fitness function definition and in
controller’s shape.
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In [Hallam and Ijspeert, 2003], a form of staged evolution for the generation
of a controller for both a lamprey and a salamander was implemented. They
used blocks of neural nets to control the locomotion of a swimming lamprey,
and their lamprey model was then later improved for the swimming and walk-
ing behaviour of a salamander [Ijspeert, 2001]. In a nutshell, they used the
biological concept of central pattern generator (CPG) for the generation of os-
cillatory patterns in the robots. In both cases, a whole bunch of CPGs were
created which they called segmental oscillators. Each segmental oscillator is
an independent oscillator composed of several neural networks, and about 100
segmental oscillators are generated for the control of each of those animats. The
output of some of these oscillators are connected to the muscles of the animat.
Oscillators are also interconnected in order to synchronize their oscillations with
a propagating wave which would allow the animat to swim and/or walk. Their
method for the generation of the controller is divided into stages: in the first
stage, a single segmental oscillator is generated using a genetic algorithm for the
evolution of the weights (the number of neurons and their connections were al-
ready decided beforehand). Once the oscillator is created it is copied 100 times,
and connections between neighbours established. These connections weights are
then evolved for the generation of the final locomotory pattern. In the case of
the walking behaviour of the salamander, an additional stage was added which
allowed the evolution of two additional CPGs for the control of the legs.

In a similar manner, two separate and independent neural controllers were
evolved for a Khepera robot in [Lara et al., 2001], - each one in charge of one
different behaviour. Each module was also separately evolved using an evolu-
tionary algorithm called ENS3 [Pasemann, 1998] which allows for the automatic
evolution of the structure and size of the network. One network was evolved
to generate an obstacle-avoidance behaviour, and the second one was evolved
for a light-following behaviour for a Khepera robot in a simulator. Once each
behaviour was obtained, an additional step was used to merge them into one
single controller. The same algorithm was used to evolve the connection be-
tween modules. In this case, both previously evolved modules were no longer
evolved, and only new neurons which act as an interface between modules were
allowed to be created . The final controller produced a robot that exhibited a
joint behaviour of light seeking and obstacle avoidance. This architecture also
presented a graceful degradation of the behaviours when the interface neurons
were removed one at a time.

For the implementation of a staged process it is necessary to have some kind
of structure that allows the division of the controller into different parts, and for
each to be evolved in different stages. Previous approaches included this char-
acteristic, but they were very tied to their own particular implementation. We
propose the creation of a kind of universal structure (an architecture) suitable
for any robot and any task. These requirements unavoidably lead to the use of
modular neural networks, and due to the complexity level required, a powerful
way to solve the problem is by using the divide and conquer principle. Hence,
we advocate the use of a modular architecture that allows the progressive evo-
lution of complex behaviours. To this end, a complete review of the modular
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neural approaches to robot control will be introduced in the next chapter.

2.7 Conclusions

Evolutionary robotics is an excellent technique for the generation of controllers
for autonomous robots. It stresses the importance of embodiment and envi-
ronmental interaction for the generation of intelligent behaviours, and has been
successfully applied to several robots performing different tasks, though the field
still faces some tough challenges (for a list of them see [Mataric and Cliff, 1996]).
Foremost amongst these, is the fact that it still requires improvement on multi-
ple levels if complex behaviours in complex robots are to be evolved. We propose
that in order to evolve behaviours in complex robots, two different approaches
need to be used: introduction of selective bias in the evolutionary process, and
evolution of the entire controller in stages.

In this thesis we will focus on the creation of a suitable architecture for
use within this framework for any type of robot, wholly independent of the
number of sensors and actuators it is composed of. If selective bias and staged
evolution need to be implemented, then the best way to handle this problem
is by using a modular neural architecture. In the next chapter we will review
the available modular neural network-based architectures for intelligent robot
control, in order to set out the current state of modular architectures and how
evolutionary robotics can be improved by using them.
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Modularity is a financial force that

can change the structure of an in-

dustry

Baldwin & Clarck, 2004 3
Modularity in robot controllers

The previous chapter pointed out that a modular neural controller may be re-
quired in order to achieve the evolution of a neural controller in a complex
robot solving a complex task. This chapter explores the coherence of such a
suggestion, and subsequently determines that it is indeed a good way of struc-
turing controllers. Current state of the art modular neural controllers are then
reviewed in order to determine how the proposed DAIR architecture should
ideally be structured.

In the 3.1 section an introduction to the concept of modularization as well
as a justification of the benefits of using modularity in neural controllers is
provided. Section 3.2 provides a taxonomy of neural modular architectures;
outlining the applications of those architectures to robot control. Section 3.3
concludes that while some modularization applications serve as a point of de-
parture, none of the architectures available nowadays will completely be general
enough to be applied to any robot for any task. The central reason for this is
that the core concept behind most of the existing modularization architectures
is that of division by behaviour. This route will lead us to the next chapter
where an entirely new level of modularization is proposed, giving birth to the
DAIR architecture model.

3.1 Introduction

In this section we will introduce a few ideas concerning the concept of modularity
and its application to the creation of intelligent autonomous robots. When
creating controllers for the global behaviour of a robot, one can establish an
initial classification in the following controller architecture terms: the monolithic
approach, where a single module contains the complete required behaviour of
the robot, and the modular approach, where the global behaviour associated to
the task is decomposed into a set of simpler behaviours; each one implemented
by one module.

Monolithic controllers implement all the required mappings between the sen-
sors and actuators of the robot in a single module. The main advantage of this
approach is that it is neither necessary to identify the sub-behaviours required
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Figure 3.1: Differences between controlling a humanoid robot with monolithic
(left) or with modular (right) controller: in the monolithic case, a single module
takes care of all aspects of the robot, while with a modular approach a module
can be designed for each activity, as well as a coordination mechanism between
modules. When the robot to control is complex a modular controller is simpler
than a monolothic one in terms of number of connections to train.

for the controller nor the relations between them. However, the fact remains
that when the controller to implement is very complex in terms of the number
of behaviours, sensors and actuators, it may in practice be impossible to create
such a controller without experiencing great interferences between its different
parts. In this case, the result is more often than not a controller that performs
its assigned task very poorly.

In such cases a modular controller may do the job, dividing the monolithic
complex controller into smaller, simpler parts. This is a direct application of the
divide and conquer engineering principle. Furthermore, studies performed point
out that complex behaviour cannot be achieved if modularity is not introduced
at some level [Boers and Kuiper, 1992, Azam, 2000]. Either way, several ex-
periments have already been conducted comparing the differences between the
two approaches, in each case revealing that a modular controller outperforms a
monolithic one [Nolfi, 1997, Auda and Kamel, 1997b, Ziemke and Bodén, 1999,
Di Ferdinando and Parisi, 2000, Téllez and Angulo, 2004] in one way or another.

Before delving further into the list of modular architectures, some basic
concepts such as modularity and module will be defined. The existing evidences
of the necessity of modularity for complex control systems will then be pointed
out, and a list of the advantages of such an approach provided.
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3.1.1 Definitions

We will understand modularity as the property that has some complex compu-
tational tasks divided into simpler subtasks1. In such cases, the resolution of
the complex task will be tackled by first solving the easier subtasks with the use
of specialized computational systems, referred to as modules. The solution for
the complex task is then obtained by combining the solutions provided by the
modules [Azam, 2000]. In other words, modularity can be seen as the existence
of a subset of variables in a system which can be optimized independently of
the rest of variables in the system [De Jong et al., 2004]. With both definitions;
when modularity is applicable to the resolution of a problem the problem is said
to be modular, which implies the existence of a structure within the problem to
be solved that the modules are able to capture.

In modular systems each of the modules primarily operates according to its
own intrinsically determined principles. Modules within the system are closely
integrated but remain relatively independent or dissociable from other modules.
When the interactions between modules are weak and modules act indepen-
dently from each other the modular system is known as a nearly decomposable,
type, as defined in [Simon, 1969]. The same concept was later named the sep-
arable problem in [Watson et al., 1998]. This type of modularity is by far one
of the most widely studied, and can be found everywhere, from business sys-
tems right through to biological systems [Simon, 1969]. In nearly decomposable
modular systems the final optimal solution of a global task is obtained as a
combination of the optimal solutions of the simpler ones.

However, the existence of decomposition in one problem doesn’t imply that
the sub-problems are completely independent from one another. In fact, a
system may be modular and still have interdependencies between modules, as
indicated in [Watson, 2002a]. Hence, a decomposable problem is defined as a
problem that can be decomposed into further sub-problems, but where the op-
timal solution of one of those depends on the optimal solution of some of the
others [Watson et al., 1998]. How this concept of a decomposable problem is ap-
plicable to the DAIR architecture will be clearly demonstrated, thereby helping
to define it.

Some recent works [Husken et al., 2002, Callebaut, 2005] suggest that the
strength or weakness of interactions between modules can be seen as a matter
of degree. On the other hand, the resolution of decomposable modular systems
is more difficult than a typical separable modular system, and is usually treated
as a monolithic one in literature [Azam, 2000].

Most of the works that use modularity make use of the definition of a mod-
ule given by J. Fodor [Fodor, 1983, Carruthers, 2005], which is very similar to
the concept of object in Object Oriented Programming (OOP): a module is a
domain specific processing element, which is autonomous and not capable of in-
fluencing the internal working of other the modules. The only way a module can
influence another is by its output, this is, the result of its computation. Mod-

1Remember that in this thesis the word behaviour will be used in a general way along with
the word task, indicating in both cases the same concept of robot purpose of creation.
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ules are not aware of a global problem to solve or global tasks to accomplish,
and are specifically stimulus driven. The modular system’s final response to the
resolution of a global task is provided by the integration of the responses of the
different modules by a special unit. The specific control architecture that has
been selected defines how this integration is performed. The integration unit
must decide how to best combine the modules’ outputs and produce the systems
final answer, and is not permitted to feed information back into the modules.
This definition of a module allocates space for both types of modularity (nearly
decomposable and decomposable).

Weaker definitions of module exist, such as that proposed in [Carruthers, 2004].

3.1.2 Evidences for use of modularity

The interest in using modularity for robot control arises from the realization that
modularity is an ubiquitous organizational principle found everywhere, and at all
levels in natural and artificial complex systems [Simon, 1969, Callebaut, 2005].
From both biological and philosophical points of view it would appear that the
use of modularity is a requisite for complex intelligent behaviour. Furthermore,
from an engineering point of view, modularity seems the only way to deal with
complex systems for complex tasks.

3.1.2.1 Biological evidences

There is physical evidence of the brain being a distributed, massively parallel
and self-organizing modular system, which suggests that the brain is composed
of very specialized modules which work more or less independently from one
another, and are organized in a hierarchical structure with different levels and
types of modularity; including parallel and serial modularity [Arbib, 1995]. Ev-
idences include sparse connectivity between neurons found in the brain, where
groups of networks form clusters; or functional modularity found in the vision
system, with specialized modules for contrast, motion and colour detection.
Further evidences can be found in [Caelli et al., 1999].

In [Ballard, 1986] it is suggested that due to the limited number of neu-
rons that the brain contains, it was forced to evolve a modular architecture.
Other authors suggest that competition in the brain between different net-
works results in certain networks becoming specialised for particular functions
[Geshwind and Galaburda, 1987]. In this sense, a similar result has been re-
ported in [R. Calabretta and Wagner, 1998], where a control architecture evolved
specialized modules in competition with others for a robot controller.

3.1.2.2 Philosophical evidences

Philosophical arguments indicating that the mind has a modular composition
have been brought to light by several authors. Some philosophers, such as
Fodor, argue for a computational theory of the mind, where the mind is com-
posed of computational modules but only at a peripheral level: a module for
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Figure 3.2: Brain modularity from a biological point of view: different zones
of the brain are dedicated to different processes (free image obtained from
Wikipedia).

vision, another for language, another for reasoning [Fodor, 1983, Fodor, 2000].
Other authors argue that mind modularity would reach deeper levels, created
and shaped by natural selection [Pinker, 1997, Sperber, 2002, Weiskopf, 2002,
Carruthers, 2004, Carruthers, 2005]. They are supporters of what has been
called the massive modularity hypothesis, which claims that mind modularity is
produced in all levels of mind. This means that the module for vision will itself
be modular too, as well as all the other modules for the different activities. In
this line of thought, artificial intelligence pioneer Marvin Minsky proposed in
[Minsky, 1988] a kind of massive modularity theory in the form of a society of
small mindless processing units, referred to as agents.

3.1.2.3 Engineering evidences

The principle of divide and conquer is a strategy commonly used in engineering
for the resolution of complex problems. It consists of dividing the complex
problem into a set of simpler sub-problems, and then combining the individual
solutions of each sub-problem for the generation of the solution of the complex
problem. This principle is used all the time in all types of engineering, and so
its application to the design of complex robot controllers would appear to be
sound idea too.

3.1.3 Advantages of modular approach

Aside from the evidences of the existence of modularity in natural and artifi-
cial systems, the use of modularity provides the following advantages for the
resolution of complex problems:

1. A complexity reduction of the task to be solved [De Jong et al., 2004].
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Figure 3.3: Massive modularity of mind in the form of a society of small mindless
processing units (free image obtained from Wikipedia).

Figure 3.4: Engineering modularity. One typical example is the process of
modularization in software development. C++ design based on object-oriented
programming pursues this philosophy.
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Whilst the optimization of all variables in a monolithic system is per-
formed simultaneously and results in a large optimization space, in modu-
lar systems the optimization is performed independently for each module,
resulting in a reduced searching space.

2. Scalability, in the sense that the use of modules should allow the resolution
of more and more complex problems by using the modules already created
for the creation of the new ones, or simply by adding new ones to those
already existing [Urzelai et al., 1998].

3. Robustness. In modular systems, damage to one module affects that mod-
ule alone, resulting in a loss of the capabilities of that module, but the
whole system will still partially keep functioning [Simon, 1962].

4. Computational efficiency. If a processing task can be divided into separate
and parallel subtasks, then the computational effort will be reduced in
terms of both time and processing complexity [Azam, 2000].

5. Modularity may lead to meaningful representations of the system be-
haviour [Calabretta et al., 2000, R. Calabretta and Wagner, 1998].

6. Modularity may be a solution to the problem of neural interference espe-
cially for neural network based systems [Di Ferdinando and Parisi, 2000].
Monolithic networks suffer from the phenomenon of interference, also
known as crosstalk (as described in [Jacobs and Jordan, 1993]). It is pro-
duced when either an already trained network loses a part of its knowledge
when it is retrained for a different task (also known as temporal crosstalk
[Jacobs et al., 1991a]), or when a monolithic network has to learn two or
more different tasks at the same time (spatial crosstalk [Jacobs, 1990]).

7. Reusability. Modular systems allow for the reuse of modules in different
activities, without having to re-implement the function represented by
each different task [De Jong et al., 2004, Garibay et al., 2004].

8. Reduction of the effects of the credit assignment problem. Whenever
the controller must learn something new, the learning mechanism should
provide a learning signal based on the controller’s current performance.
This learning signal will be used to modify the controller parameters for
an improved controller behaviour. When the controller is in charge of
many elements it becomes difficult to find which parameter has to be
changed based on the global learning signal. Modularization helps to keep
controllers small, minimizing the effect of the credit assignment.

3.1.4 Drawbacks of the modular approach

The drawbacks of modular systems are in general as follows:

1. In general, no systematic method exists to decide which and how many
modules are required for the controller, nor which functionalities should
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encode each one. This information is usually heuristically decided by the
designer, based on his experience [Brooks, 1986, Mataric, 1992, Schrott and G., 1995,
Mataric and Cliff, 1996, Vlassis, 2003].

2. Different modules working on different tasks inside the same robotic body
implies designig a coordination system between modules.

3. In the particular case of modular neural networks, there exists the addi-
tional drawback of credit assigment in the sense that neural modules need
to be trained, and it is not clear how to teach every module what to do.

3.2 A taxonomy of modular neural architectures

This section provides a classification of modular structures, - especially those
based on artificial neural networks, since the purpose of this thesis is the use of
ANNs for robot control. It will help to identify interesting approaches for the ap-
plication of modularity to the evolution of complex controllers; an already exist-
ing architecture, a modified architecture, or a new designed one. The taxonomy
introduced is based on the classification presented in [Buessler and Urban, 2003]
on modular neural architectures. A similar classification can also be found
in [Auda and Kamel, 1999], including a classification of modular training algo-
rithms. This section also contains a list of particular instances of those archi-
tectures when applied to robot control. All the architectures included will be
considered to be homogeneous, that is, all modules within an architecture will
have the same internal structure, except for the case of automatically generated
architectures.

3.2.1 Hierarchical architectures

In hierarchical architectures (see figure 3.6), neural modules are implemented
in a layered cascade of modules, with the main role of the structure being to
determine which module will finally generate the answer to the task. In the
cascade, output from previous modules select which module will be activated
in the next hierarchical level. The system’s final response is provided by the
last module activated, better known as the output module. Supervised learn-
ing techniques are usually used to train output modules, while unsupervised
learning is applied to the selection modules. This architecture is primarily used
in task recognition patterns, [Murino, 1998], characters [Suganthan, 1999] or
vowels [De Sa and Balard, 1998].

In robot control research, unsupervised and reinforcement learning-based
methods have been used mainly for training modular hierarchical architectures.
One interesting application is [Nolfi and Tani, 1999], and revolves around the
use of prediction learning to extract regularities2 from the external environ-

2The term regularity is understood as a set of sensory states which can be separated from
others and which are stable over a period of time, hence predictable. The extraction of
regularities from the environment is meant to be useful for the achievement of the goal.
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Figure 3.5: General classification of modular neural architectures (adapted from
[Buessler and Urban, 2003]).

Figure 3.6: Hierarchical architecture. Thick black arrows show the path followed
by input data X to generate answer Y.
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ment. A similar approach was used in [Schmidhuber and Prelinger, 1993] for
an unsupervised classification.

In a more recent related work [Paine and Tani, 2004, Paine and Tani, 2005],
research focused on how hierarchical controllers can self-organize without ex-
plicitly designing that hierarchy.

In a different line of research, modular architectures decomposing the con-
trol problem into a set of neural modules exist, which should interact for the
resolution of the robot task, in this way generating a hierarchy of modules.
This is the case of the Emergent Task Decomposition Network (ETDN) in
[Thangavelautham and D’Eleuterio, 2004].

3.2.2 Parallel architectures

In parallel architectures several modules treat input information in parallel,
and modules can use either all the same information, or different subsets of it.
Generally speaking, a problem is decomposed into several simpler sub-tasks,
each one managed by a separate neural net (a module). Each module’s solution
is then integrated using an integrator module, thereby generating the system’s
final answer. Parallel architectures have largely been used for classification
problems since they are suitable for an easy partitioning of the input space into
the different categories.

Several types of parallel architectures exist depending on how input infor-
mation is introduced, and how the final output is generated. In the case that
each module treats its own and different input information the architecture is
referred to as data fusion architecture. This type of architecture is composed of
several modules, each one having a different set of inputs. An example of this is
the sensed data coming from different sensors, whose responses are combined in
order to generate the system’s final answer (figure 3.7). The purpose of this ar-
chitecture is essentially the combination of different data coming from different
systems, along with the generation of a single percept. An application example
can be found in [Ghahramani, 1995] where a sensorimotor integration system is
constructed for localization using visual and auditory stimulus.

Another kind of parallel architecture is known as the ensemble-based ap-
proach [Hansen and Salamon, 1990, Krogh and Vedelsby, 1995]. In this case,
all the modules have the same input data, and different outputs are gener-
ated. The results from modules are then either combined (known as (co-
operative use), or only one is selected (known as selective use) by an addi-
tional module. The purpose of having different modules in the same data is
to enhance the systems performance, rather than to divide the problem into
subtasks [Alpaydin, 1993, Battiti and Colla, 1994, Rogova, 1994, Jacobs, 1995,
Sharkey, 1996, Sharkey, 1997] (see figure 3.8).

The ensemble approach has generally been used in classification applica-
tions [Yao and Liu, 1996, Sharkey and Sharkey, 1997]. In [Pardoe et al., 2005]
the ensemble approach was used to control a pole-balancing action.

Without a doubt the most popular type of parallel architecture is the lo-
cal experts ensemble. In this case each module specializes in a portion of the
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Figure 3.7: Data fusion architecture. Different information is feed into the
modules.

Figure 3.8: Neural network ensemble. The same information is provided to all
the modules.
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Figure 3.9: Mixture of experts.

search space being trained only with the part of the training set that corre-
sponds to that space. Each module becomes an expert on that space, and the
system’s final answer is a combination of the answers from each module. This
architecture has had more successful instances in the adaptive mixture of ex-
perts architecture developed in [Jacobs et al., 1991b]. Based on previous works
in [Hampshire and Waibel, 1989, Jacobs et al., 1991a], a local experts ensem-
ble with an additional gating network added was created which determined the
weighting coefficients for each module output according to the input values (see
figure 3.9) [Alpaydin and Jordan, 1996].

The same authors implemented a hierarchical version known as the hier-
archical mixture of experts [Jordan and Jacobs, 1994]. A modified hierarchical
mixture of experts architecture was proposed in [Azam, 2000], which is a com-
bination of the original architecture and the alternate hierarchical mixture of
[Xu et al., 1995] with two added elements; namely, input gates and input switch-
ing.

In the case of robot control, [Tani and Nolfi, 1999] studied the case of when
neural networks self-organize and coordinate as a set of experts which will handle
the different sensorimotor flow that a robot experiences.

In [Chen and Chi, 1999], what the authors refer to as a generalized mixture-
of-expert architecture was implemented. The main idea of the basic architecture
was kept, but groups of expert ensembles rather than simple expert neural
nets were created. The learning method was also modified by using their own
probabilistic method.

In the same line, [Auda and Kamel, 1997a] defined the cooperative modular
neural network architecture, which is a modified version of the mixture of ex-
perts where the gate is substituted by a voting mechanism implemented in each
of the expert modules. They provide an extensive comparison between their ar-
chitecture and others for classification tasks [Auda and Kamel, 1997b], includ-
ing some parallel architectures such as Decoupled and Other-output architectures
[de Bollivier et al., 1991], ART-BP [Tsai et al., 1994], Ensemble with major-
ity vote [Alpaydin, 1993], Ensemble with average vote [Battiti and Colla, 1994],

42



3.2. A TAXONOMY OF MODULAR NEURAL ARCHITECTURES

Figure 3.10: Schematics of a serial architecture implementation example

Merge-glue [Hackbarth and Mantel, 1991] and some hierarchical ones like Hier-
archical architecture [Corwin et al., 1994] and Hierarchical Competitive Neural
Net [Auda, 1996].

In a different work, [Davis, 1996] created a modular neural network for the
autonomous navigation of robots. In [Yamaguchi and Itakura, 1999] a similar
modular neural architecture with a different learning algorithm based on feed-
back error training was proposed. Another case is that of [Silva and Ribeira, 2003]
where a modular neural network was used for navigation in a NOMAD 200 mo-
bile robot.

3.2.3 Serial architectures

In serial architectures, complex problems are split into successive partial tasks
(figure 3.10). Serial architectures are composed of several modules, each one
handling a few inputs and producing an intermediate result that is fed into
another module until the final module produces the system answer. They can
be trained by supervised learning by making use of the backpropogation error
technique; using the final error obtained by the final module as the error signal,
and backpropagating it through the different modules. However, in some cases
with multiple levels of serial modules this method can be difficult to implement.
In such cases a separated training by modules could be used, - though it is not
assured to converge on an intelligent controller for all applications.

In [Caelli et al., 1999] this architecture was applied in a pattern recognition
task. For robot control, [Buessler and Urban, 2003] applied the serial architec-
ture to the control of a robot arm in combination with a learning-aid architecture
to train modules (see subsection 3.2.5). The learning technique, known as bi-
directional learning, and consists of the addition of a learning-aid module which
trains itself simultaneously to the module that is supposed to be trained by
tracking each other’s response as the desired output to minimize the difference
between their estimations.

Another training option is the use of genetic algorithms to evolve some of
the modules. This is the case of the legged robot of [Manoonpong et al., 2005,
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Figure 3.11: Distributed architecture schematics. Each module manages a small
part of the control, and can be linked by a coordination mechanism (dotted line)
with the other modules.

Manoonpong et al., 2007] controlled by neural modules. A series of three dif-
ferent modules was designed: one in charge of accessing the sensors and pre-
processing them, another to generate the oscillatory patterns, and a third to
control the velocity. Each module was successfully trained using a genetic algo-
rithm.

3.2.4 Distributed architectures

Distributed architectures are those without a central controller. There is no
module to combine the modules’ answers or to select which module will produce
the control response. Instead, all the modules produce their response in the
effectors that they are associated to, and their response is usually coordinated in
some way with the responses of the other modules. This means that the output
produced by each module is not entirely independent of the output of the other
modules, but rather that a subtle influence exists. This is a very important
difference when compared with the previously described architectures, where
each module produced its own answer in a fully isolated manner.

In distributed systems, coordination can be achieved through communica-
tion between elements [Werner and Dyer, 1992], though communication is not
strictly necessary to achieve coordination. Some studies in fact indicate that
communication may even be harmful when a system remains simple as it can
overload the system, resulting in a sub-optimal solution [Wagner, 2000]. In
[Yong and Miikkulainen, 2001] for example, a distributed system that coordi-
nates with communication is compared with another without communication
(only the environment provides coordination). They concluded that communi-
cation does not provide an advantage when systems are very simple.

Coordination in some systems can therefore be obtained by other means;
depending on the nature of the task to solve, environment, and available pop-
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ulation, etc (like for example simple rules [Kaplan, 2005]). An example of this
approach is [Wischmann et al., 2005], where a decentralized controller for the
control of a very special robot with a wheel shape was evolved. In this case, a
wheeled robot was controlled by means of five different and entirely independent
controllers. Coordination is obtained then by an interaction of all the modules
contained in the agent, which acts on the environment [Pfeifer and Scheier, 1999].

In [Potter and Jong, 2000] a similar method for the distribution of compo-
nents by the cooperative coevolution of subcomponents was described. The
evolutionary process provides the required pressure for interdependent subcom-
ponents to emerge, - each one covering one portion of the solution space. Each
subcomponent is then able to adapt to changes in role of the other subcompo-
nents. Their job was unfortunately only applied to pattern matching problems.

Distributed approaches have been especially successful in the generation of
walking controllers. Even if most references propose ad-hoc solutions (that is,
solutions without generalization for use in other robots), they are effective in
what they attempt to solve. The first examples are [Beer and Gallagher, 1992,
Gallagher et al., 1996], where a series of distributed neural modules is used to
simulate an insect walking. Each module controls one of the legs, and a coupling
between modules is used to coordinate the different modules.

A similar approach was used by [Ijspeert, 1998, Ijspeert, 2001], where dis-
tributed components were used for the generation of a walking and swimming
salamander. In this work, separated neural modules were evolved, each one im-
plementing an oscillator, and designing one of these modules for each segment of
the salamander model. Couplings between different segments were then evolved,
obtaining a complete coordinated distributed controller. The same idea of cou-
pled oscillator modules was also applied to the evolution of swimming lampreys
[Hallam and Ijspeert, 2003].

Recently, [Valsalam and Miikkulainen, 2009] has proposed a method to au-
tomatically discover symmetries in the task to evolve while evolving the dis-
tributed controller required for it. They applied the method to the evolution of
a walking quadruped in simulation.

Additional examples of distributed architectures applied to legged robots
can be found in [Lewis et al., 1992, Valsalam and Miikkulainen, 2008].

3.2.5 Learning-aid architecture

In monolithic networks supervised training is easily achieved by using simple
algorithms (like backpropagation [Bishop, 1995]). In modular architectures this
is not possible though, - at least not in a direct way, as error produced during the
training phase is only accessible at the global controller level. Instead, learning
should be defined at the level of each individual neural module to train each of
the modules.

In [Buessler and Urban, 2003] an architecture known as learning-aid was
considered in an effort to solve this problem. Learning-aid modules in the ar-
chitecture were used to train neural modules during the training phase. Those
learning-aid modules were also made up of neural networks, but their work was
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Figure 3.12: Learning-aid architecture schematics

reduced to the training phase. Once the training phase was over those mod-
ules were not used for the generation of the controller response. Figure 3.12
presents a basic schematics of this architecture, where the ANN2 neural module
is included to provide an error signal to the ANN1 module, thus allowing it to
learn.

Unfortunately, not much research exists on how the ANN2 module should
be created, nor which type of signal it should receive in order to generate
the learning error for the ANN1 module. An application of this architecture
can also be found in [Buessler and Urban, 2003]. A serial modular architec-
ture was coupled with a learning-aid architecture, which allowed the super-
vised training of the modules; avoiding the separated training of each module
[Buessler et al., 2002, Buessler and Urban, 2003, Hermann and Urban, 2003].

Another application can be found in [Yamaguchi and Itakura, 1999], where
a robot neural architecture is divided into submodules, and each of these trained
by simple feedback controllers.

3.2.6 Automatically generated neural modular architec-
tures

In previous architectures, schematics and distribution of modules were designed
and classified by human designers following particular engineering guidelines.
Another type of architecture, defined as automatically generated is now defined,
inclusive of all the methods that automatically generate the neural structure of a
modular controller. The methods described here do not present a predetermined
distribution of modules, but rather an algorithmic description of how to generate
them. Furthermore, modules created following this procedure may not even be
homogeneous since they are created through a genetic algorithm, making it
impossible to define beforehand the type of architecture that will appear.

Thus, it is very likely that architectures generated using these methods could
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Figure 3.13: The emergent modular architecture in [Nolfi, 1997]

be classified within the previous types of architectures (serial, parallel, etc), but
we have considered this category an additional one as it is not limited to the
generation of already existent architectures, but rather that any mixture and
combination can also be generated, as long as the final controller is composed
of modules.

Basically, automatic architectures are generated through the execution of a
genetic process which decides some or all of the following requirements: how to
split search space, how many modules are required, how are they implemented,
and how they should be combined for the generation of a solution. Applica-
tion examples can be found in [Sims, 1994, Gruau, 1995, Whitley et al., 1995,
Bongard, 2002, Garibay et al., 2004, Reisinger, 2003, Reisinger et al., 2004].

In [Nolfi, 1997], an unsupervised modular neural architecture, referred to as
emergent modular was proposed for the control of real robots (see figure 3.13).
Based on this approach, architectures for the automatic creation of neural mod-
ules were presented in [Calabretta et al., 1998, R. Calabretta and Wagner, 1998,
Calabretta et al., 2000].

[Di Ferdinando and Parisi, 2000] studied the use of modular neural networks
to solve the neural interference problem, using [Rueckl et al., 1989] as point
of departure in the What and Where task. This research was extended to
an appropriate modular and innate connectionism method based on Artificial
Life, called evolutionary connectionism [Calabretta and Parisi, 2005]. Research
related to this problem was continued in [Calabretta et al., 2003].

In [Watson, 2002a, Watson, 2002b], compositional methods were proposed
as a solution to the generation of complex behaviours with high interaction
between them. They basically consist of a set of evolutionary operators with
enhanced functions, such as sexual recombination with several lineages in di-
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vided populations, lateral transfer and symbiogenesis. A description of how to
use them for the resolution of numerical problems exists, but no application to
robots has to date been reported .

There also exist examples of automatically generated controllers having their
own specific methodology. An application example is found in [Liu and Yao, 1997],
where individual modules and their integration are evolved in the same evolu-
tionary process. Neither the number of modules nor the integration fixed by
any algorithm was predefined. This approach avoids the separation of module
design and module integration, - as adopted by other solutions. This method
was applied to the diagnosis of several diseases.

In a similar work, [Cho and Shimohara, 1997] studied how structure and
functionality of modular neural networks emerge by designing some basic mod-
ules. Modules were the basic building blocks used to autonomously evolve the
structure of neural networks, developing at the same time a new functionality.
It has been applied to a handwriting recognition system.

In [Stanley and Miikkulainen, 2002], the NEAT algorithm has been pro-
posed for robot control where an ensemble of neural nets are used for the task.
Examples of application include [Pardoe et al., 2005], where the NEAT algo-
rithm evolved at the same time as the architecture of the nets, their weights
and the gating network. The NEAT algorithm has lately been improved to
Modular NEAT [Reisinger et al., 2004], which has the ability to evolve reusable
neural modules.

In other cases, genetic algorithms are used to evolve only small parts of the
controller modules. For instance, in [Filliat et al., 1999] a 6 legged robot walk-
ing controller was designed using an evolutionary process that automatically
evolved two different modules; one for walking and another to avoid obstacles.
The algorithm evolved the inner workings of the modules, but the number of
modules, their functions and how they connected to each other was decided
beforehand.

3.3 Selecting a suitable architecture

Thus far a list of the currently available types of modular architectures for
neural network control has been presented. By comparing them it can be ob-
served that apart from distributed and automatic architectures the process to
generate a modular controller is very similar. Simply stated, it starts by di-
viding the task into modules, next, decomposition into modules is performed
by deciding which sub-tasks or behaviours are required to generate the global
task, and finally, a module is assigned to implement each of such sub-tasks
[Auda and Kamel, 1997b, Azam, 2000].

This kind of decomposition into sub-tasks works well in simple robots with
a limited number of devices, but this type of decomposition can not lead to
an evolved controller when the number of devices is high, such as in the case
of complex robots. Applying this approach to complex robots is not as simple
since the number of devices required to implement the behaviour will be large
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even if the behaviour is simple.
Hierarchical architectures for instance require that all the sensors feed their

sensed values into a single input module, generating the actuators commands
from another single output module. When the number of devices is high, a
single input module and a single output module do not seem to be enough, as
spatial crosstalk can appear to be preventing training. A possible solution is to
divide input and/or output modules into smaller modules; each one in charge
of a reduced group of devices. Since it is difficult to decide which devices are
controlled by which module, a more general solution would be to assign a single
module to each device. Hence, no single input module would exist but a group
n of input modules equal to the number of sensors. For the output the same
applies. Output would also be composed of p different modules; each equal to
the number of actuators. This solution, even if it looks more adaptable, still
faces the challenge of training all of those small modules and their internal logic
modules, which appears quite difficult due to the large number of modules and
their relations.

If the idea of one module associated to each device is kept, but all the
internal logic removed, the hierarchical architecture results in a kind of parallel
one, composed of one input module per sensor, and where the combination
module is composed of several modules, - one per each output actuator.

Both parallel and serial architectures face the same problems as hierarchical
ones when applied to complex robots. Many sensors and actuators need to be
managed, which in turn makes the number of connections in the input/output
modules very high. This complicates the training of the intermediate modules
to a large extent (gating, combination or intermediate networks).

Distributed architectures and automatic architectures usually have different
approaches. Automatically generated architectures could appear useful at first
glance, but they include a large search space when they are applied to complex
robots. Since everything needs to be evolved from scratch (modular structure
and network weights), problems for evolutionary robotics increase as the robot
becomes increasingly complex. From those methods however, one can borrow
the idea of evolving inner parts of modules and connections between them, but
only once a suitable architecture is already in place and being used as substrate.

In distributed architectures, a single module can be in charge of controlling
a small group of devices whilst implementing a simple function. For instance, in
walking architectures shown in section 3.2.4, small neural modules implemented
oscillators to act upon a single actuator. This mechanism allows a considerable
reduction of the number of inputs and outputs that the neural module has to
train, simplifying the task to be implemented by the module as well as the num-
ber of weights to evolve. This type of approach can also benefit from symmetries
or similar functionalities between elements by evolving one single module and
then duplicating it whenever the same functionality is required inside the robot
(as was done in [Ijspeert, 1998, Ijspeert, 2001, Hallam and Ijspeert, 2003]). This
reuse of modules is also very efficient at reducing the evolutionary space of the
whole robot. A drawback to date however is that distributed approaches have
only implemented ad-hoc solutions to the robot and task to be solved at the
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moment. No general procedure exists to apply to any robot for any task.
For the resolution of the problem depicted in chapter 1, a modular architec-

ture which reduces complexity there where it is is required. Then, in complex
robots, the first source of complexity is the number of devices to control for any
task. Any simple task will have to manage a high number of devices to control,
hence, the evolutionary search space will be very large for even the simplest of
tasks.

This is more in the line of a distributed architecture, where modules are cre-
ated based on the number of the devices to control (indicating the complexity of
the robot), instead of modularizing tasks. For this purpose, the introduction of
a new way of performing modularity is proposed, which can in turn lead to more
general and scalable modular controllers. Instead of performing modularization
at the task level, that is, a global task is divided into sub-tasks, we propose
to perform a modularization at the device level, that is, a global controller is
divided into sub-controllers; one per each device. Modularity in terms of sub-
tasks is not forgotten. A complex robot can also be required to implement quite
complex tasks. For this reason, modularization at the level of the task level will
also be required.

We will refer to this approach to modularization as strategic and tactical
modularity, and a complete description is provided in the following chapter.

3.4 Conclusions

This chapter has provided a complete review of the different types of existing
modular neural networks; focussing on their application to robot control. It has
been divided into two main approaches: modularization based on task decom-
position (mainly implemented by hierarchical, parallel and serial architectures),
and modularization based on the devices that are involved in a task (in the case
of distributed architecture). It was observed that for complex robots, modular-
ity has to be implemented first where complexity is found first, that is, in the
number of devices. The next chapter will provide an in-depth description of our
proposed architecture.
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Nothing is more fairly distributed

than common sense: no one

thinks he needs more of it than he

already has.

Descartes 4
DAIR, a distributed modular neural

architecture

In the previous chapter, a complete review of modular neural architectures that
have been successfully applied to robot control has been provided. However,
none of the modular approaches presented were applied to complex robots with
dozens of devices to be coordinated.

Distributed architectures appeared to be the most suitably matched to the
requirements initially established in this thesis; namely, applicable to complex
robots, general enough to be applied to any robot and any task, scalable as to
the number of robot devices (sensors or actuators) as well as in the number of
tasks, able to generate control for an agent with the introduction of the least
amount of external knowledge as possible, and that easy integration into the
controller should be possible when external knowledge is required .

This chapter is devoted to detailing the architecture developed by this re-
search to address those precise requirements. The ideas that drove the devel-
opment of the architecture will be discussed, as well as their influence in the
final version. Finally, several illustrative application examples of both simple
and complex robots will be given.

4.1 Departing ideas

As a result of the analysis conducted in the previous chapter, we have estab-
lished that a distributed modular architecture is required for the purpose of this
thesis. Little is known however about at what level of modularity should be
implemented (how to generate the modules), how modules will be coordinated,
and how modular elements should be encoded and trained. This section pro-
vides a list of important ideas on the generation of intelligent agents that have
been taken into account when designing the proposed architecture.

4.1.1 Sensorimotor coordination

Sensorimotor coordination will be the basis of the architecture’s design for
the generation of complex robot behaviours. Sensorimotor coordination is un-
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derstood as the coupling existing between perception and action when per-
forming a behaviour. The system will integrate multiple sources of informa-
tion in order to estimate its own state, and its relation with the environment
[Ghahramani et al., 1997].

In fact, the principle of sensorimotor coordination [Pfeifer and Scheier, 1999]
will be adhered to; which states that any intelligent behaviour, such as percep-
tion, categorization, memory, etc, can be conceived as a sensorimotor coordina-
tion which serves to structure the input. As shown in [Pfeifer and Scheier, 1997],
sensorimotor coordination does not simply mean reflexive behaviour. Instead,
sensor inputs and interaction with the agent environment whilst performing a
task serve to guide the behaviour.

The concept of sensorimotor coordination is particularly interesting for three
reasons:

• Both sensors and motors play an important role in coordination, and
should therefore have an equivalent level of complexity in control. Both
should co-evolve to obtain coordination when the robot is complex.

• Sensorimotor coordination induces correlations, thereby reducing the high
dimensional space to a lower dimensional sub-space.

• It allows for the integration of several sensory modalities.

The sensorimotor coordination principle suggests that the whole process of
behaviour does not begin with a sensory stimulus, but rather with a sensori-
motor coordination, and that it is the movement which is primary, and the
sensation which is secondary (as indicated in [Pfeifer and Scheier, 1997] quot-
ing [Dewey, 1896]). Sensor and motor systems must be intimately connected
in their behavioural execution. This principle will serve as the basis for both
the control architecture and design in this thesis. Additionally, as will shown
in chapter 8, this principle will permit the architecture to construct its own
internal representation of its current situation, directly grounding experiences
to its sensorimotor apparatus.

4.1.2 Massive modularity

Most modular approaches advocate for a, let’s say, discrete level of modularity.
Modularity for an agent’s control system consists of a limited number of mod-
ules; each one in charge of controlling a simple behaviour, and a coordination
mechanism which decides how they should be combined.

Modularity, however, can be pushed further and introduced into the be-
haviour modules. We advocate for the concept exposed in section 3.1.2.2 of
massive modularity [Minsky, 1988, Carruthers, 2004, Carruthers, 2005] to break
down large behaviour modules into smaller modular parts. Several levels of
modularity are defined within the massive modularity of mind theory (the idea
that the mind is composed of independent, closed, domain-specific processing
modules). Even if the existence of modules at a functional level is recognized,
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supporters of this theory also suggest the existence of modularity within lower
levels of the brain. These modules would only be concerned with perform-
ing the simplest of tasks. When several of these small modules are put to-
gether - whether competing or cooperating with each other, the emergence of
a superior function would result by means of a coordinated and concerted in-
teraction amongst all the elements, and without a central control driving ei-
ther the modules or the interaction. This is called distributed artificial intelli-
gence [O’Hare and Jennings, 1996], which has derived into multi-agent systems
[Stone, 2000].

We have adopted this idea for the design of the DAIR architecture, and use
it to decompose large behavioural modules into smaller ones. This decomposi-
tion should permit the use of the architecture in complex robots with dozens
of devices, in which it would otherwise have been very difficult to generate a
behaviour.

4.1.3 Using human knowledge

It has been argued throughout this thesis that human knowledge needs to be
introduced into the evolutionary process in order to obtain complex behaviours
in a complex agent and successfully generate the agent controller. When com-
paring the artificial evolutionary process described in chapter 2 (see figure 2.1)
with natural evolution, it has been observed that natural evolution gradually
shaped the animals body plan, sensors and actuators, environment and ner-
vous system at the same time. Artifical evolution however attempts to evolve
the nervous system for a given body (the robot morphology), a group of given
sensors and actuators, and a given environment (which includes the required
task/behaviour in a given place). Only when the robot and the task to evolve
have a low degree of complexity is the evolutionary process able to evolve the
appropriate behaviour; this is due to the evolutionary steps between successful
generations being very small. However, when the robot or the task is complex
the evolutionary process cannot produce a good enough solution, and it falls
into local minima or bootstraps that do not produce the required behaviour. In
this case, only a gradual incremental change from one generation to the next
may lead to a functional controller.

Intense research is currently underway in an attempt to develop better ge-
netic algorithms and genetic encodings with which to decrease the required
granularity for evolution, i.e. reduce the search space at each step. This the-
sis however proposes a different solution based on the introduction of human
knowledge in the evolutionary process. This approach follows the line traced
by incremental evolution (see section 2.4.1), where expert knowledge is used to
design the different steps in which the evolutionary process will be divided. Sim-
ilar suggestions have been proposed in other works; such as BAT methodology
[Urzelai et al., 1998], or in the previously studied developments of controllers for
different robots [Ijspeert, 2001, Hallam and Ijspeert, 2003, Muthuraman et al., 2003,
Muthuraman, 2005]. Machine learning techniques (like the evolutionary pro-
cess) are integrated in a rational manner in each case, along with a previous
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in-depth analysis of the required behaviour for the agent. As was stated in
[Urzelai et al., 1998], the entire development activity needs to be conceived and
organized in the appropriate manner.

Accordingly, the DAIR architecture will be modularized for allowing the
straightforward introduction of knowledge and providing as many opportuni-
ties as possible for their introduction. Furthermore, the knowledge introduced
should affect only those parts of the controller that need to be affected, thereby
avoiding the crosstalk problem whenever possible.

4.1.4 Double closure

We would like to consider to some extent the concept of double closure. The
concept of double closure was described by von Foerster in his work on how to
implement cognitive beings [von Foerster, 1970]. It basically states that:

The meanings of the signals of the sensorium are determined by
the motorium; and the meanings of the signals of the motorium are
determined by the sensorium.

In the same way as stated in the sensorimotor principle, sensors and actua-
tors must be coupled at a low level (sensations must affect motors, and motors
must affect sensors; but in a sense that goes beyond the indirect resulting in-
fluence of the environment) in order to obtain an autonomous agent. It is this
coupling between both systems that produces a meaningful representation of
the world for the agent itself, and it is this internal model which should permit
the agent to generate cognitive processes.

Accordingly, an embodied agent can be autonomous and organizationally
closed, but at the same time structurally coupled with the environment it
is situated in, which in the constructivist sense is its own invented reality
[Ziemke, 2005]. It is evident that in most agent control systems, sensor pro-
cesses and motor processes are separated even if feedback from the real world
is included. This feedback is not enough to achieve the von Foerster concept
of double closure. Perception and motion must therefore be connected to each
other in such a form that information has its origin in this creative circle. Mo-
tor stimuli must also be sent to the sensor elements in order to allow a correct
prediction. Hence, the control mechanism must not be based on internal mod-
els which try to precisely model the environment; instead, the internal model
must induce the emergence of an invented reality based on interaction with the
environment.

4.2 The DAIR approach

The most important issue when designing modular neural networks is the defi-
nition of the modular neural architecture at the abstract level such that it does
not lose its relevancy to the application at hand, biological/cognitive adherence
and theoretical analysis [Azam, 2000]. Hence, based on the definitions provided
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Figure 4.1: Main steps in the design of modular neural networks (reproduced
from [Auda and Kamel, 1999])

in section 4.1, a complete definition of all the relevant terms and parts that
constitute the DAIR architecture is included in this section.

4.2.1 Introduction

As indicated in [Auda and Kamel, 1999], three general steps are common in
most Modular Neural Network (MNN) designs: task decomposition, training
and multimodule decision-making (see figure 4.1). Task decomposition refers to
the division of the required behaviour into several sub-behaviours, and then as-
signing each sub-behaviour to a module. Task decomposition is the most impor-
tant step when implementing a modular neural network design. Subsequently,
modules should be trained in either parallel or different processes - following
the sequence indicated by the modular design; and finally, when modules have
been prepared, a multi-module decision-making strategy must be implemented
to indicate how all those modules should interact to generate the global response
that will in turn give rise to the required global behaviour.

When closely observing the modular approaches referred to in the previous
chapter, it becomes clear that most of them more or less adhere to the previous
three-step specification. From our point of view, these architectures perform
modularization at the behavioural level, that is, the main goal behaviour required
for the agent is divided into several sub-behaviours (in one way or another) and
one neural module is in turn created for each sub-behaviour. This method
has also been referred to as functional decomposition in [Davis, 1996]. One
problem with this approach however is that when the agent to control is complex
(composed of several sensors and actuators), then even a simple sub-behaviour

55



4.2. THE DAIR APPROACH

Figure 4.2: Differences between modularization at the behavioural level (left)
and modularization at the device level (right), for a robot composed of 3 devices
(1 sensor, 2 actuators).

will be difficult to generate as several of these devices need to be coordinated.
Furthermore, it is possible that the given behaviour is an atomic unit (in terms
of behaviours) and therefore cannot be divided into simpler sub-behaviours. A
functional decomposition in behaviours results in a nearly decomposable system
(as defined in section 3.1.1); where each behaviour is independent from the
others.

Indeed, what may happen in such cases is that the evolutionary process is
not able to find a good solution that coordinates all the robot devices as the
search space is very large, due to the number of devices available (sensors and
actuators). The following question then arises:

If sensorimotor coordination is about coordination between sen-
sors and actuators rather than coordination of different behaviours,
why not use modularity there where the first source of complexity
arises, that is, at the device level?

Reasoning about that question, this thesis proposes to introduce an addi-
tional level of modularization in the robot controller; performed at the device
level. This modularization aims at providing a modularized structure within
any behavioural module, but as well as the behavioural module being produced
as a result of a functional decomposition, the device module is produced as a
decomposition of resources; resources being understood as the devices (sensors
and actuators) available for the robot to accomplish its assigned task (that is,
its behaviour). This type of modularization leads to a decomposable system (as
defined in section 3.1.1), where modules for each device are independent but
continue to hold strong dependencies with the rest of modules.

Introducing modularization at the device level results into two different types
of modularization. The next section defines both types and clearly determines
at which level each one acts. Interaction between the two levels will also be
described, as well as how they can be combined in order to generate extremely
complex controllers.
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4.2.2 Definitions

From game theory [McCain, 2003], it has been defined that strategy answers the
question of what has to be done in a given situation in order to perform a given
task, i.e. it divides the global target solution into all the sub-targets required to
accomplish it. Tactics, on the other hand, answers the question of how the plans
are to be implemented i.e. how to use the resources available at that moment
to accomplish each of those sub-targets. When these definitions are applied to
agent behaviour, strategy can be thought of as the overall group of behaviours
(sub-goals) required by an agent for the accomplishment of a goal, and tactics
as the actual means used to achieve each of those sub-goals. Thus, these same
definitions can be used to identify two levels of modularity in neural controllers:
strategic modularity and tactical modularity.

We define strategic modularity in neural controllers as the modular approach
that identifies which sub-behaviours are required for an agent in order to obtain
a global behaviour. This division into sub-behaviours can be made from a distal
or proximal point of view, but either way, each sub-behaviour identified will be
implemented by a monolithic neural net. In contrast, we define tactical modu-
larity in neural controllers as the approach that identifies which robot devices
are necessary for the implementation of a given behaviour, and creates a single
module for each device. In tactical modularity, modularization is performed at
the level of the elements that are actually involved in the accomplishment of
the task.

To our knowledge, most of the research is based on neural modularity and
divide-and-conquer principles, focussing on their division at the strategic level,
that is, how to divide the global behaviour into its sub-behaviours; either from
a distal or from a proximal point of view, and in either a manual or an auto-
matic way. They then implement each of those sub-behaviours by means of a
single neural controller. Our research proposes the use of tactical modularity,
where a behaviour must be automatically broken down into the parts that are
going to actually physically perform the work; namely the agent’s sensors and
actuators. It is expected that tactical modularization will be very helpful in
the generation of controllers for complex robots, that is, robots where several
sensors and actuators need to be coordinated in order to accomplish a task. In
such robots, a monolithic implementation of the controller may not be possible
even for a simple behaviour, and a modularization at the device level may quite
possibly help to solve the problem. Additionally, early results (described in
section 4.2.6) suggest that a greater level of modularity in the controller would
increase its performance [Téllez and Angulo, 2004] of even simple behaviours in
simple robots. This result will be confirmed in the next chapter, where the use
of the two types of modularity will be compared against monolithic approaches.

The creation of modularity at the device level corresponds to four motiva-
tions

1. To design modules through the implementation of sensorimotor coordina-
tion.
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2. To increase the level of modularity beyond the established models of sub-
behaviours, thereby permitting massive modularity in robot control.

3. To allow information insertion by the designer directed at one particular
device or small group of devices.

4. It would be a sound assumption to provide each element that participates
in a task with its own processing element.

The use of one type of modularity does not prevent, in principle, the use of
another one at the same time. Strategic and tactical modularity can be used
separately or in conjunction with each other. When the robot task is not very
complex either a strategic or a tactical modularization can in principle generate
the required controller. In such cases we suggest that modularization selec-
tion depends primarily on the complexity of the agent, that is, a monolithic
controller for simple robots or a tactically modular controller in the case of a
complex one. Furthermore, when the task to solve is very complex and requires
very different and unrelated behaviours, and the agent is also complex in terms
of the number of sensors and actuators, then a combination of strategic and tac-
tical modularization may be required. In such cases a strategic modularization
should be performed first; this will identify the different sub-behaviours that
require implementation. Following this, a tactical modularization should be de-
veloped for each of those sub-behaviours, identifying each of the devices that
will participate in the sub-behaviour and assigning a module to each device. For
instance, if an Aibo robot has to learn a behaviour to stand up, walk to some
place, and then sit down, then a manual and distal strategic division of the task
could distinguish between three different sub-behaviours (stand up, walk and sit
down). Each of those behaviours would then be created using tactical modules
(see figure 4.7).

We refer to the approach as Distributed Architecture with Internal Repre-
sentation (DAIR), where both strategic and tactical modularity can be used in
any combination. The term Distributed Architecture refers to the way different
modules compose the architecture whilst no central control is in place. The
addition of the term Internal Representation in the name of the architecture
will be explained in chapter 8.

4.2.3 Implementing strategic modularity

The term strategic modularity implementation will be understood as the tech-
nique that identifies which sub-behaviours compose a given robot behaviour and
also defines their relations in terms of cooperation. Strategic modularity can be
implemented by any of the modular approaches referred to in chapter 3. How to
perform the behavioural subdivision in terms of sub-behaviours has been widely
studied in literature, and is not the goal of this research. In principle, any of
the modularization methods described in chapter 3 are valid for integration with
tactical modularity.
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Examples of applied strategic modularity can be found in [Gruau, 1995],
where cellular encoding is used to automatically decompose a problem into
sub-problems, and then generate a single monolithic ANN for the solution of
each sub-problem. Similarly, in [Thangavelautham and D’Eleuterio, 2004] an
emergent task decomposition network architecture is proposed, consisting of
a set of decision neurons which mediate competition, and a set of monolithic
expert networks that compete for dominance. In a less automatic approach,
in [Urzelai et al., 1998] the BAT methodology is proposed for a step-by-step
design of modular controllers, with human intervention in the specification of the
modules required. Developed in [Stone and Veloso, 2000] and lately improved in
[Whiteson and Stone, 2003] a task decomposition scheme is proposed; namely
layered learning, where a hierarchical task decomposition is manually performed,
and learning applied to each separated layer.

In conclusion, strategic modularity has already been used for a number of
years, - although it was not given that name. We have used the term strategic
for these modular approaches in order to differentiate them from the new level
of modularity that we propose; namely tactical modularity.

4.2.4 Implementing tactical modularity

Tactical modularity creates modularity at the level of the robotic devices which
have to perform a required behaviour. Each of the sensors and actuators that
participate in the strategic module conform to a tactical module. Tactical modu-
larity is implemented by designing a completely distributed control architecture
composed of small processing modules around each of the robot’s sensors and
actuators. Requirements for a tactical module are:

• It must control its associated device.

• It must have a single processing element, which permits its associated
device to perform a simple task.

• It must be connected to the other tactical modules for coordination, since
there is no central referee; especially important is the connection between
sensors and actuators for the accomplishement of the double closure prin-
ciple.

• It must be simple.

• In order to have homogenity, it must be possible to use the same module
for either sensors or actuators.

Following these requirement set out, we propose the following design for
tactical modules:

Each tactical module in the architecture is organized into what it is known
as an Intelligent Hardware Unit (IHU). The IHU schematics are displayed in
figure 4.3. An IHU is composed of a sensor or an actuator as well as a processing
element that processes its associated device’s information, that is, information
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Figure 4.3: Top: Intelligent Hardware Unit schematics. Bottom: Internal con-
nections of a IHU with a sensor (left) and an actuator (right).
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received from the sensors or commands sent to the actuators. This type of
connectivity means that the processing element is the one that decides which
commands must be sent to the actuator, or how a value received from a sensor
must be interpreted. We say that the processing element is responsible for its
associated sensor/actuator.

All the IHU’s are connected to each other, that is, output from each IHU
is sent back to all the other IHU’s, and each IHU is therefore aware of what
the others are doing. The processing element is therefore also responsible for
deciding what to communicate to the other elements, as well as interpreting what
the others are communicating. IHU output take its own and the other elements
information into consideration when generating its answer. This situation allows
for a strong coupling between devices, as well as a response generation that is
highly influenced by the other elements. A sensor IHU may generate a different
answer for the same sensory stimulus, if information from the other IHU’s are
different.

Artificial neural networks have been selected as the processing elements for
IHU’s, since we are interested in modular neural networks. However, any type
of processing element can be used (look-up table, regression, dynamic equations,
fuzzy-logic, bayesian rules, etc). ANN type is not restricted either. In principle,
we would like to use the simplest possible type for the task to be solved; this
to be determined by the designer at time of implementation. In any case,
each neural network will be endowed with as many inputs as IHU’s exist, since
all of them should be interconnected. As far as outputs go, only one will be
allowed, and it alone will represent the output of the IHU module. Two or
more outputs being generated would however allow for more complex models.
In this thesis we have selected the single output option in order to reduce the
overall complexity. Figure 4.4 shows a connectivity example in the generation
of a DAIR neural controller in a simple robotic system composed of two sensors
and two actuators. The processing elements are all distributed throughout the
robot body, and strong interactions exist between the different elements. This
means that even if the controller is created by separated modules, they are not
really independent in the sense that the optimization of one module depends
on the optimization of the others. Hence, this modularization can be defined as
decomposable (as defined in section 3.1.1).

It should be noted that when several IHU’s are put together in a control
task, that each element has its own particular vision of the situation; selecting
an action for its device based on its knowledge of the global situation at that
moment as well as the state of its particular device. A distributed coordination
between all the elements is required in order to permit the entire robot to
perform the required behaviour; only possible due to the connections between all
the elements. Coordination is achieved during the evolutionary process through
the evolution of the weights of the inputs that connect to the outputs of the
other devices.

What is interesting about sensors is that their associated IHU computes
what to do with the sensed value. It determines whether the processing is
necessary and then of which kind; depending on a number of factors: what
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Figure 4.4: Simple application of the architecture for a Khepera II robot using
two sensors and two actuators. The figure on the left displays a representation
of the idea applied to the robot, and the figure on the right shows how such
controller would finally look when implemented using the DAIR architecture.

other sub-agents are doing, the type of neural net used, the sensor features
and the current value sensed. Hence, sensor processing is also learnt during
co-evolution.

Distributed coordination

Distributed coordination can be defined as the result of a dynamical process
that enables several agents to coordinate in order to achieve a global task
without the use of a central coordinator [Kaplan, 2005]. The coordinated be-
haviour of the group emerges from the interaction of these simple agent be-
haviours. The concept of distributed coordination has been applied to several
domains, e.g. the autonomous generation of a language for a group of agents
[Kaplan, 2005], the generation of a walking agent, or in predator and prey games
[Yong and Miikkulainen, 2001], to name but a few.

In the DAIR architecture, distributed coordination is required in order to
achieve the coordinated behaviour of all the parts of the robot where an ANN
for each sensor/actuator exists. Coordination will be possible because there is
a direct communication link between all the IHU elements which reports their
output to the rest of the IHU’s. Given that different ANN’s need to evolve
through the evolutionary process for different roles in the common task, a co-
evolutionary algorithm is required, i.e., the simultaneous evolution of several
nets with a common fitness [Moriarty and Miikkulainen, 1998]. By using this
kind of algorithm, it is possible to teach the networks how they must cooperate
to achieve a common goal (i.e. the behaviour to be implemented) when each
network has its own unique vision of the whole system.

62



4.2. THE DAIR APPROACH

Evolutionary algorithm

Being that the evolutionary process is a kind of reinforcement learning task,
multiple algorithms can be used to generate the final controller. In fact, the
selection of one algorithm or another can alter the degree of success achieved by
evolutionary robotics methods [Nolfi and Floreano, 2000]. The DAIR architec-
ture does not request the use of any specific algorithm, but simply recommends
one that is particularly suitable for distributed architectures such as DAIR. Af-
ter having researched the available algorithms (as described in section 2.3.1),
we opted for Enforced Sub-Populations (ESP) [Gomez and Miikkulainen, 1996].
An ESP is an algorithm derived from the Symbiotic Adaptive Neuron-Evolution
algorithm (SANE) [Moriarty and Miikkulainen, 1996a, Moriarty, 1997]. Both
algorithms are characterized by their evolution of neuron populations instead of
evolving complete neural nets. Populations consist of hidden neurons, each with
its own input and output connections. Those neurons are used to construct the
hidden layer of a neural network by randomly selecting neurons for the hidden
layer. The difference between SANE and ESP is that in ESP the neuron pop-
ulation is segregated into sub-populations, allowing for a group of neurons to
specialize in a specific position within the hidden layer of the neural network,
hence obtaining ANN’s with better fitness scores.

Furthermore, by keeping the same position it is possible for the ESP to
evolve recurrent neural networks, since hidden neurons from the pool of neurons
will always connect in the same way within a constructed neural network. The
DAIR architecture does not specify the type of neural net attached to the devices
within IHU’s. As a general rule, the simplest possible option for the behaviour
required should be used. However, as will be seen in chapter 6, complicated
neural nets which include recurrent connections are sometimes required. For
this purpose, ESP is a good option as an evolutionary algorithm.

Additionally, some reports suggest that ESP is especially good when used to
evolve several neural nets belonging to different agents inside the same problem,
but each with different vision of it [Yong and Miikkulainen, 2001]. This appli-
cation of the ESP algorithm to multiple agents has been named multiagent-ESP
(see figure 4.5).

A brief description of the ESP algorithm stages follows:

1. Initialization. The number of hidden units in the network, u, is specified
and u subpopulations of neuron chromosomes are created. Each chromo-
some encodes the input and output connection weights of a neuron with
a random string of real numbers.

2. Evaluation. A neuron is randomly selected from each subpopulation to
form a network. The network is submitted to a trial in which it is evaluated
on the task and rewarded with a fitness score. The score is added to
the cumulative fitness ftotali of each neuron i that participated in the
network. This process is repeated until all the neurons have participated
in an average) number of trials tav (by default tav = 10).
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3. Recombination. The average fitness favi of each neuron is calculated by
dividing its cumulative fitness ftotali by the number of trials nti in which it
actually participated (fav i = ftotal i / nt i). For each subpopulation, neu-
rons are ranked by their average fitness. Each neuron in the top quartile of
its subpopulation is recombined with a higher ranked neuron in the same
subpopulation using one point crossover and low probability mutation.
Offspring are used to replace the lowest ranking half of the population.

4. Repetition. Repeat the evaluation and recombination processes until ei-
ther the fitness reaches a certain score or the number of iterations reaches
the limit; both previously set by the designer.

Additionally, ESP is combined with an iterative search technique, known
as Delta-Coding [Whitley et al., 1991], which allows for a search for optimal
modifications for the current best solution by fine tuning the solutions found.
It works as follows: when the ESP algorithm has converged on a good enough
solution (which means that diversity within the sub-populations is minimal), the
best solution is saved, and all the rest discarded (deleted). A new group of sub-
populations is then created by taking the best saved solution and adding to it the
∆-values representing small differences from the best solution - obtained from a
Cauchy distribution. These sub-populations are used to start the evolutionary
process again, now using the newly generated sub-populations. Delta-coding
therefore performs an exploration of the solutions space in the vicinity of the
best previous solution. The use of delta-coding facilitates incremental evolution.

Delta-coding is mainly used in ESP when incremental learning is performed.
In such cases, delta-coding provides a good transition mechanism from one task
of the incremental learning process to the next. Delta-coding is invoked when
one of the tasks of the incremental learning process has been achieved, and
the next task of the incremental learning process is then set for evolution. Sub-
populations will look for a controller for the new task starting from a population
of genotypes that lies around the solution of the previous task.

For the DAIR architecture the multi-agent ESP version of the algorithm is
used. It is a modification of the basic ESP algorithm. ESP is usually used to
evolve a single neural network. Due to the fact that we have several neural
networks that must be co-evolved at the same time we can use an independent
set of sub-populations for each network that we have to evolve, and evolve the
complete set of sub-populations at the same time.

Figure 4.5 shows differences when using ESP or multi-agent ESP for the
control of a robot composed of two motors and two sensors. In the case of plain
ESP, a global ANN is evolved to control the whole robot, that is, sensors feed
the network input and ANN outputs encode in some way what the agent must
do at the next time step. In the case of multi-agent ESP several nets must be
evolved, each one controlling a single part of the robot (one network for each
device in the case of DAIR).

When several ANN’s are evolved at the same time there are two different
ways of assigning credit to them: using a competitive approach or using a cooper-
ative approach. Since the DAIR architecture is a cooperative one, a cooperative
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Figure 4.5: Differences of a controller for the ESP and for the multi-agent ESP
when controlling a simple robot agent composed of two sensors and two motors.
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Figure 4.6: Encoding scheme used in a DAIR controller composed of n networks
with k connections each. Each weight for each the neural net is directly included
in the genotype. Weight Wij encodes the j -th weight of the i-th network.

Table 4.1: Table with the recommended use of the different modularity types,
based on the complexity of the robot and the complexity of the task.

Complexity Low cmplx. task High cmplx. task
Low cmplx. robot Monolithic OR Tactical Strategic OR Tactical
High cmplx. robot Tactical Strategic AND Tactical

approach has been selected. Hence, all the IHU’s participating in an evaluation
will share the same fitness.

Encoding scheme

A direct encoding was selected as the encoding scheme for this architecture.
Accordingly, each of the ANN weights will be directly encoded in the genotype
as a genetic trait (see figure 4.6). The decision to use this simple encoding is
in order to maintain a low complexity level of the architecture implementation.
The job of designing DAIR architecture with more efficient encoding schemes is
left for the future.

Genetic operators

The ESP algorithm uses the two most common genetic operators; namely one
point cross-over and mutation. Mutation rates are kept low.

4.2.5 Combining tactical and strategic modularity

Tactical modularity may be used in a standalone manner or combined with
strategic modularity. In fact, the architecture was planned for its use in complex
controllers where both types of modularities should be used to generate a really
complex robot behaviour. The use of one type of modularity does not prevent,
in principle, the simultaneous use of the other type of modularity. A summary
of recommended modularity use is provided in table 4.1.

When the robot to use is simple both strategic or tactical modularization
can in principle be used. In such cases, selection of modularity type should
be based on the complexity of the problem. When the problem is simple and
the number of devices is low, even a monolithic controller can be advised. For
complex problems, strategic modularity alone may be the best option. Selecting
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a monolithic or strategic in lieu of a tactical modularity should depend entirely
on what level of proficiency can be expected from the controller; when only
a good enough controller is required, then monolithic or strategic may do the
job. However, as will be seen below, tactical approaches usually obtain better
performance than monolithic and strategic approaches. The price to be paid is
a longer evolutionary time, this due to the higher number of weights to evolve.

In the event that the robot is complex (i.e., with a large number of devices),
and the task to solve is simple, a tactically modular controller alone may be
the best option. When the task at hand is very complex and the number of
elements is large, then a combination of strategic and tactical modularization
may be required.

When combining both approaches in one neural controller a strategic mod-
ularization should first be performed in order to identify the different sub-goals
required for the implementation. This step can be processed using any of the
architectures or approaches already existing in literature for this purpose. Once
the strategic modules have been decided and their functionality specified, tacti-
cal modularity should be applied to divide each of those strategic modules into
tactical modules. The number of tactical modules for each strategic module will
depend on the elements (i.e., robot devices) that participate in the resolution
of the specific sub-goal. Figure 4.7 shows an example of a highly modularized
controller that uses both types of modularity.

Next, each strategic module is trained, that is, tactical modules composing
a strategic module. Two training approaches are available:

1. Use a common fitness function and train all of the strategic modules at
once.

2. Use a different fitness function per each strategic module, thus evolving
each module separately.

4.2.6 A simple example of application

This section demonstrates the application of the DAIR approach to a simple
robot composed of two sensors and two actuators. A tactically modular con-
troller will be created to perform a contour following behaviour around an ob-
ject. The same behaviour will also be evolved for a monolithic controller, in
order to compare performance (deeper comparisons of the DAIR architecture
with other architectures will be shown in the next chapter). Both processes will
be performed in the Webots simulator.

The setup

The Webots simulator was used to design the experimental setup. Simulation
basically consisted of a open space (see figure 4.8), with a large object in the
centre. The robot will be randomly placed inside the open space with a random
orientation, but close enough to the object to be able to reach it in a couple of
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Figure 4.7: A highly modularized robot controller which implements both types
of modularization in a single neural controller; for the Aibo robot. The robot
should stand up, walk to the other corner and sit down again. Each blue box
indicates a strategic modularization. Red boxes are tactical neural modules,
- each one containing a neural net. Each strategic module is composed of 28
tactical modules (namely, IHU modules implementing neural nets).

Figure 4.8: The Khepera II robot simulation (left) and its environment (right),
used for the example in section 4.2.6. Only two out of the eight infrared sensors
available in the robot are used for this example.
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Table 4.2: Table of discretization values for sensors
Discretization name Sensor range

FAR S > 1000
MEDIUM 500 > S > 1000
CLOSE 500 > S > 250

VERY CLOSE 250 > S

Table 4.3: Table of discretization values for speed
Discretization name Speed value
FULL FORWARD 1.0
HALF FORWARD 0.5

STOPPED 0.0
HALF BACKWARD -0.5

running steps. Its task will be to look for the object and move around it following
its contour. To keep the experiment simple only two IR sensors will be used, and
the control system will not include integration of information over time. This
means that the robot will know nothing about its past and will decide what
to do next based only on its current sensors’ state (Markov Decision Process
condition).

The robot

The robot used for the experiment is a software simulation of the Khepera
II robot (figure 4.8). This robot is composed of eight infrared sensors and
two wheels (amongst other features). For this simple example only two of the
infrarred sensors were used; one of the sensors that points to the front, SY, and
the left sensor situated on the extreme left side, SX. The first sensor measures
the distance between the robot and the object in front of it, while the second
sensor measures the distance between the robot and the object situated to its
left.

Simulating real life conditions, sensors have been modeled to be able to
detect objects at a range of between 3cm and 20cm. Anything out of this range
will not be detected, so it is possible for the robot to be in front of an object
and not detect it because it is either too near or too far. So as to keep the
whole system simpler the detection values of the sensors have been quantized,
allowing only four possible values: FAR, MEDIUM, CLOSE and VERY CLOSE
(see table 4.2). The range of velocities has also been quantized for the motors:
FULL FORWARD, HALF FORWARD, STOPPED and HALF BACKWARD
(see table 4.3). Both motors and sensors are modeled by a noisy schema defined
in the simulator.
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Figure 4.9: The neural architectures used for both controllers tested in the con-
tour following experiment. The figure on the left displays the neural controller
used for the monolithic controller. The figure on the right shows the DAIR
controller.

The evolutionary process

The integration of the evolutionary process with the simulator works as follows:
the evolutionary algorithm functions as a supervisor controller of the simulation.
After initialization of all populations, a genotype is created for evaluation from
the pool of genotypes. The genotype is expressed (converted) into the phenotype
(that is, the neural network or group of neural networks). This phenotype is
then sent to the robot controller, which will use it in the simulation for an
amount of time (arbitrarily decided by the experimenter). Once the time has
elapsed a fitness value is generated by the controller based on its performance;
this value is then sent to the supervisor, indicating the fitness obtained by the
genotype that was tested. A new genotype is then expressed and sent to the
robot controller, and the entire process repeated once again. Technical details
of how this procedure is actually implemented in the Webots simulator can be
found in Appendix B.

The same process is performed for both the single network controller and the
DAIR controller, the only difference being the expression of the genotype into
the phenotype; one single network in the monolithic case, and four networks in
the DAIR case. The following fitness function was defined to obtain the find
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Table 4.4: Parameters used for the ESP algorithm in the evolution of the
contour-following controllers.

Parameter Name Parameter Value
Subpopulations 1 (monolithic), 4 (tactical)

Size of subpopulations 40
Mutation rate 0.4

Number of trials 10
Stagnation 10

Number of evaluation time-steps 200
Time step (ms) 100

Number of generations 200

and orbiting behaviour:

fitness =























+stored when

SX = CLOSE
∧ SY = FAR
∧ Vleft 6= STOPPED
∧ Vright 6= STOPPED

−1 otherwise

�

�

�
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where stored is a variable with initial value = 1. At any time step that the robot
is following a contour stored value is incremented by one unit. Whenever the
robot loses contact with the object stored value drops to 1. SX is the discretized
value for sensor X, SY is the discretized value for sensor Y, Vleft is the discretized
velocity of the left wheel, and Vright is the discretized velocity of right wheel.
This fitness function is calculated at each time step of the simulation. It will
increase the reward in one unit at each time step that the robot is running
forward with both wheels, detecting an object on its left at CLOSE distance,
and detecting nothing in front of it at that time step.

Some values required for the algorithm are presented in the 4.4 table: the
number of subpopulations is equal to the number of output neurons; the size of
sub-population parameter indicates the number of neurons available for its use
in each subpopulation; the mutation rate expresses the rate at which neurons
are mutated; the number of trials indicates the mean number of times that every
neuron of every subpopulation must be tested before recombination is started;
and the stagnation parameter defines the number of trials without improvement
before delta-coding is invoked. The number of steps indicates the amount of
step times that an evaluation is run until it reaches the maximum fitness. The
number of generations shows the number of times that the evolutionary algo-
rithm is applied. The same experiment was run 7 times for 150 generations
each run. The final result is shown in figure 4.10 as an average of all the 7
runs. Additionally, the fitness evolution of each of the 7 runs can be viewed in
Appendix C.
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Figure 4.10: Evolution of the average fitness through generations for the mono-
lithic (left) and the DAIR (right) controllers.

Results

After the evolutionary process is finished, it is observed that the behaviour
obtained in both controllers is very similar. Basically, the main behaviour is
composed of two sub-behaviours; one behaviour searching for the central ob-
ject, and another behaviour for moving around the object. The first behaviour
appears when the robot senses nothing, that is, all the IR sensors of the robot
sense no obstacle. Thus, the behaviour obtained for this situation is a circular
movement which assures the robot that at any point, it will find an obstacle,
independently of its initial orientation. Once the robot detects the object with
the SY sensor it starts turning until SX detects the object and SY does not.
The robot then starts a forward movement, which moves the robot along the
contour of the object in counter clock-wise rotating direction. This behaviour
allows the robot to regain contact with the object once it loses its detection on
reaching the corner.

A single neural net was used (figure 4.9-left) for the centrallized controller.
The required behaviour was obtained after the 200 generations, with the average
maximum fitness obtained being 7996. For the distributed controller, instead,
four different neural networks like the one shown in figure 4.9-right were used;
one for each IHU. All the neural networks were evolved at the same time with the
same parameters as those in the 4.4 table, as well as the same fitness function. In
this case, the contour-following behaviour was evolved after the 200 generations
with an average fitness value of 9689.

When comparing results for the monolithic and the distributed experiments
it is observed that the behaviour obtained shows no observable visual differences.
A few differences can be observed from a technical point of view however; firstly,
the averaged number of generations required to obtain the same behaviour was
smaller in the case of the distributed controller, and secondly, the maximal
fitness obtained by the distributed architecture is greater than that obtained by
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Figure 4.11: Sequence of images showing the contour-following behaviour ob-
tained.

the monolithic approach. The distributed approach learnt faster (in terms of
generations) and better (in terms of fitness value) even though the number of
weights to evolve in the distributed case was four times greater than the number
of weights for the monolithic controller. Due to the higher number of weights
to evolve, a distributed generation lasted more time (in terms of number of
seconds) than a monolithic generation.

The sensor sub-agents’ real job

When using four IHU’s to control the robot the question about the necessity
of using IHU in the sensors arises. Since its only job is to receive the value
from the sensor and deliver it to the rest of neural networks, the question is
whether it is really necessary to use these elements in such passive elements. Is
the IHU attached to the sensor’s performing any job? From an intuitive point
of view, it seems clear that attaching a processing element to the sensor output
should add value to the behaviour of the robot, though it may result in the
cost associated with its evolution reducing the overall performance of the whole
robot controller. Hence, to answer these questions an additional experiment
was performed in the contour-following behaviour setup.

In this experiment, a distributed controller with only two IHU’s, - one per
each motor was created, that is, no IHU were used for the sensors (see figure
4.12). Output from SX and SY sensors was directly connected to the neural
networks inputs of the actuators IHU. The same evolutionary process was per-
formed for the evolution of the contour-following behaviour. Results showed that
the resulting robotic agent was able to evolve the required contour-following be-
haviour. Its fitness dropped a bit from the maximum averaged value obtained
with DAIR (an average of 8019 for the controller without sensor IHUs, against
9689 for the four agents distributed controller), but it was over the maximum
averaged value obtained by the monolithic controller (whose maximum averaged
value was 7996). From this result, it can be observed two things: first, a medium
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Figure 4.12: Neural controller for the Khepera II robot, where the sensor IHU’s
have been eliminated, and a direct connection between the sensors and the
actuator IHU’s designed.
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Figure 4.13: Fitness function of the experiment without sensor IHU’s.

modularized controller (that is, the DAIR withour sensor IHUs) results in a fit-
ness improvement when compared to the non modularized controller. Second,
there is a drop in fitness value from having a fully modularized controller to the
half modularized one. We can infere then that sensor IHUs are really performing
a useful function, that is, they are learning something that improves the agent
behaviour. This first illustrative result will be corroborated in the next chapter
in a more complex setup (see section 5.3).

Combining strategic and tactical modularity

In order to demonstrate how strategic and tactical modularity can be combined
to generate a single controller an application example of the generation of the
contour-following behaviour is provided. If a strategic approach is used to iden-
tify the required behaviours for the contour-following behaviour, it has been
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Figure 4.14: Combined strategic and tactical controller for the Khepera II robot.

observed that two simple behaviours are required: one searching for behaviour
which will look for the central obstacle, and one orbitting behaviour that will
move around the object. There are therefore two strategic modules to imple-
ment. Each of those modules should be modularized using the tactical approach
afterwards. This means that each strategic module will be composed of four
neural networks to be evolved. The schematics of the final controller is shown
in figure 4.14. The controller works as follows: initially, the searching for con-
troller takes control of the robot. This strategic module controls the robot until
the obstacle is detected, either with sensor SX or SY . The orbitting strategic
module then takes control. At this point, the orbitting module will turn the
object clock-wise until the SX sensor starts to detect the object. Switching
between modules is manually programmed into the controller program, and is
based on the status of the IR sensors; when SX and SY are not activated by the
presence of any obstacle, the searching for module takes control, and when any
of the sensors is activated, the orbitting module takes control.

Given the described setup, the evolution of the controller is performed. Pa-
rameters for the evolution are shown in table 4.4. Due to the strategic division
made, it is possible to train each strategic module in separated evolutionary
processes. This procedure would require the generation of a fitness function
corresponding with the behaviour required for that strategic module for each
module. However, when the robot used and the behaviours required are both
simple, it is possible to evolve all the tactical modules of all of the strategic
modules in one single evolutionary process. As a drawback, evolving all the
strategic modules at once can result in a less efficient controller due to the effect
of genetic linkage between modules. This effect is better described in section
5.4.

For this case, and due to the simplicity of the robot and task to be evolved,
the two strategic modules are evolved at once: all the tactical modules of both
strategic modules evolved in the same evolutionary process and with the same
fitness function. As fitness function, equation 4.1 was used. The result was a
correct contour-following behaviour, where no differences with the only tactical
controller were observed. The experiment was only performed once, - simply
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Figure 4.15: Fitness obtained for the combined strategic+tactical contour-
following behaviour

to use it as a proof of concept, and no averaged results are thus provided (see
figure 4.15 for obtained fitness).

4.2.7 Discussion

Results obtained for the contour-following example illustrate how the approach
works for the control of robots. They show that the DAIR controller performs
better than the centralized monolithic one when evaluated on the same simple
task and (simple) robot. However, there are no conclusive arguments that could
justify the use of one over the other, as both controllers were able to present
the required behaviours with just small differences in fitness performance and
number of generations required. In some cases, when the improvement in the
fitness value does not affect the perceived behaviour, the increased degree of
complexity introduced by the strategic modularization may well not be worth
it. Experiments have shown that controller performance is improved with the
use of sensor subagents.

Finally, one can observe the strong similarities that the tactical modulariza-
tion approach shares with the schema-based control approach in [Arbib, 1992,
Arkin, 1998, Murphy, 2000]. In this theory, the control of the robot is based
on perceptual schemas and motor schemas. Perceptual schemas are linked to
sensors, and motor schemas are linked to actuators. Basically, a schema consists
of the knowledge of how to act and/or perceive, and the computational process
by which it is used to accomplish a task. The perceptual method of a perceptual
schema takes the sensor input and transforms it into a data structure called
a percept. The motor schema has at least one method (known as the motor
method) which transforms percepts into an action. So, a tactically modular
controller may be seen in terms of perceptual and motor schemas, where each
sensor has a single perceptual method associated (producing a single percept),
and each actuator has a single motor method which takes into account all of
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Figure 4.16: A typical application of the tactical modularization in the Aibo
robot. A neural module is designed for each sensor and actuator that will take
part in the required behaviour.

the percepts generated in the robot.

4.3 Using the architecture in a complex robot

The Aibo robot has been selected for a validation of the control architecture on
real robots. Aibo is a complex robot with 18 degrees of freedom and multiple
sensors and actuators that requires a good coordination between them to achieve
any simple movement task. This robot will be used in further experiments
throughout the length of this thesis as representative of a complex robot.

The aim for this stage was to check the proposed control architecture on such
a complex robot in three different tests. Each test consisted in making Aibo
perform a determined behaviour. Several combinations of simulation and real
robot were used in order to test the architecture in all the possible situations.
The first task was the generation of a remaining in a standing position, evolved
only in simulation; the second task was to learn how to push into the ground
with one leg, performing the whole evolutionary process in the real robot; and
the third task was to generate a standing up behaviour from a lying position,
evolving in the simulator and transferring the result to the real robot.
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Figure 4.17: Aibo pictures of the ERS-7 model, for the simulation (left) and for
the real robot (right).

4.3.1 The robot and its working environment.

Aibo is a quadruped robot with several existing models (ERS-110, ERS-111,
ERS-210, ERS-220, ERS-7) [Fujita and Kitano, 1998, Fujita, 2001]. The ERS-
7 model, the newest, was used in our experiments. The ERS-7 has 18 degrees
of freedom (DOF), and each leg has three DOF (three motor joints per leg),
as well as the head. The two additional DOF’s correspond to the tail of the
robot. It is equipped with a sensor in each of the joints that allows it to sense
the current position of the joint. Each leg has three different types of joints; we
will refer to them as: J1 for the shoulder joint, J2 for the elbow joint and J3
for the knee joint. There is a paw sensor at the foot of each (Aibo) leg which
indicates whether Aibo is touching the ground or not, and it is additionally
equipped with three accelerometers, three infrarred sensors (for the detection of
obstacles), a colour camera and two microphones.

When the evolutionary process is performed on-line (that is, on board the
robot), the evolution of some behaviours for Aibo can last for days. Further-
more, initial behaviours obtained during the early stages of some evolutionary
processes may damage the robot, and a simulator of the Aibo robot is used
in some cases to avoid this type of situation. Webots software by Cyberbotics
[Michel, 2004, Téllez and Angulo, 2007] was selected as simulator. It allows the
simulation of most of the robot’s features. It also provides a mechanism for
direct control of the real robot from the simulator based on a server-client ar-
chitecture, where the robot acts as the server and accepts connections from the
client computers, requesting different sensor data or sending commands to the
motors. The simulator also contains a transfer feature of evolved controllers
from the simulator to the real robot. Hence, once a controller has been gen-
erated and tested on the simulator it can be directly transferred to the real
robot1.

1At the time of beginning this research the Aibo simulation of the ERS-7 model was not
included in the simulator (only the ERS-210 model was supported at the time). A cooperation
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4.3.2 First test: remaining in a standing position

The architecture’s first test was to make the robot remain in a standing position.
The robot was set up in an initial standing position in the space and allowed to
act using its control networks. The goal here was to make it learn how to keep
up as high as possible with the least amount of joint movements as possible
(dynamical balance). Even though the task is simple the controller still has
to learn it since it will not be performed off-the-shelf; the reason is that when
a controller is connected to the joints of a robot, ANN’s will send commands
to the actuators all the time, and the joints will keep on moving unless the
associated nets decide not to move the robot. A continuous movement of the
joints could lead to strange robot positions and eventually make the robot fall
to the ground. In this task then, the robot must learn how to keep a stable high
position until the end of the evaluation time.

Setup

The following sensors and actuators were involved in the control of the robot:

• Actuators: four shoulder joints (J1), four elbow joints (J2), four knee
joints (J3). These are all motors that move Aibo’s legs and determine its
position in the allocated space.

• Sensors: four shoulder joint sensors, four elbow joint sensors, four knee
joint sensors and four paw sensors. These are the sensors that indicate the
state of the joint motors (actuators). The last four paw sensors indicate the
state of the feet paws, and are switched on when the feet touch the ground,
and off when not touching. Additionlly, three accelerometer sensors (X,Y
and Z) were used to determine Aibo’s position.

As a total 31 sensors and actuators are implied, this same number of IHU’s
are thus required for the generation of a tactical-only DAIR controller. In line
with the architectural specification, all the nets have the same number of inputs
and outputs; 31 inputs and 1 output. For the hidden units we have selected 8
hidden units based on previous experiments. Values obtained from sensors were
quantized, thus allowing a precision of one degree, i.e. the raw output from the
sensor was quantized to the closest integer angle before providing it to the IHU.
This quantization was required in order to prevent undesirable oscillations and
never ending training. Network outputs of sensors were quantized in the same
way; providing only three possible values:

• increase the joint angle by 0.05 radians

• decrease the joint angle by 0.05 radians

• not move the joint.

was initiated with Cyberbotics in order to create the new model simulation. More details of the
work done at Cyberbotics (which was required for the experiments conducted in this thesis) are
provided in Appendix A. Final results obtained in terms of the measured similarity between
the model and the real robot can be read in [Holh et al., 2006, Téllez and Angulo, 2007].
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Table 4.5: Parameters used for the neuro-evolution algorithm in the Aibo tests
Parameter Name Parameter Value
Subpopulations 8

Size of subpopulations 40
Mutation rate 0.4

Stagnation 20
Number of trials 10

Number of evaluation steps 300
Time step 96 ms

Evolutionary parameters

Parameters used in the evolutionary algorithm were selected based on previ-
ous experiences (table 4.5). The following fitness function was used for the
evolutionary process:

fitness =
final height

number of movements + 1

where final height indicated the height of the robot at the last evaluation step,
and number of movements counted the number of times that joints changed
their position since the beginning of the evaluation. Fitness rewards controllers
which achieve a high height whilst moving the robot’s joints as little as possible.
Evaluation time for each phenotype was 300 time steps.

Results

The experiment was repeated ten times and the evolution of the averaged fitness
is shown in figure 4.18. A good enough behaviour was obtained (after averaged
generation 14). In initial experiments the fitness function denominator was
not included. In those cases it was observed that the best evolved controller
achieved the maintenance of a stable robot position, but movement of the joints
never ended. The addition of the denominator makes the tremor practically
disappear.

4.3.3 Second test: learning to touch the ground with one
leg

This test performs on-line evolution of the robot leg (see section 2.2.1). The
experiment consisted of controlling one of the real robot’s legs in order to make
it learn how to push against the ground.

Setup

To perform experimentation the robot was sat down in its charging station,
with all its legs set to an initial non-interfering position. Then the leg being
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Figure 4.18: Evolution of the fitness for the Aibo remain standing test, averaged
after ten evolutionary runs.

Figure 4.19: Some screenshots for the first test with the Aibo simulator. The
evolutionary process starts with the Aibo robot in the situation depicted in fig-
ure (1). Figures (2) and (3) indicate two possible situations where the controller
tested was incorrect. Figure (4) shows the final position obtained by a successful
controller.
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Figure 4.20: Schematics of the evolutionary process in the real robot.

tested (the left fore leg) was moved to a random initial position and control was
transferred to the group of neural nets. The desired final position of the leg
after 300 time steps should be any position as long as the paw sensor of the leg
is activated (which was only possible when pushing against the ground), and
the robot does not falls down (due to pushing too much).

In this case the evolutionary program was executed on a PC, implementing
the same evolutionary algorithm as in previous section. When a controller is
generated for evaluation it is also executed on the same computer, but the
controller is fed with real data coming from the robot sensors, and sends motor
answers to it as follows: the computer is connected to the robot by way of a
wireless connection. Every 100 ms sensors values are requested by the computer
from the robot. These values are then used in the sensor IHU’s (which are
executed in the PC), and the answers generated by the actuator IHU’s (motor
commands) are then sent back to the real robot as orders for the motors. A
schematics of the process is shown in figure 4.20.

Practical implementation of the experiment included several real world is-
sues; like monitoring the temperature of the robot due to its continuous move-
ment, disabling the battery-status check to allow a continuous flow of energy, or
manually returning the robot back to the initial position when it fell down due
to strange leg movements. A special mechanism was incorporated that saved
the evolutionary state each time that a fault condition was detected (overheat-
ing, no battery power, falling down). This mechanism allowed the algorithm to
restart at the same point once the fault condition was detected and manually
solved.

An IHU was created for each of the motors and sensors that took part
in the control of the leg; they were 3 IHU’s for the leg motors, 3 IHU’s for
the motor’s leg sensors, one IHU for the paw sensor, and finally, in order to
control the inclination of the robot 3 additional IHU’s were created, - one for
each acceleration sensor (X-axis, Y-axis and Z-axis). Inclination control was
necessary in order that Aibo taught itself not to push too hard into the ground,
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Table 4.6: Parameters used for the second test in the real robot.
Parameter Name Parameter Value
Subpopulations 5

Size of subpopulations 40
Mutation rate 0.4

Number of trials 10
Stagnation 20

Number of steps 300
Time step 96 ms

thus preventing it from falling to one side. That makes a total of 10 IHU’s; 3 of
them controlling actuators and 7 controlling sensors. For each IHU a feedforward
neural network was used, composed of 10 inputs, 1 output and 5 hidden units.

The output of the actuator IHU’s was discretized to allow only three possible
answers: increase the current joint angle by one degree, decrease the angle by
one degree, or do not change current motor position. Thus, in every evolutionary
generation, the training program generated a set of 10 IHU’s that made up the
controller of Aibo’s leg. The process was repeated for 300 time steps.

Evolutionary parameters

The evolutionary parameters used for the experiment are summarized in the 4.6
table .The fitness function used was very simple:

fitness =







































when paw is activated

∧ − 60 < accelx < 60
1 ∧ − 290 < accely < −100

∧ accelz < −900

0 otherwise

The fitness function rewards those controllers where the paw sensor is acti-
vated at the end of the evaluation time, and the robot does not fall down. The
term when paw is activated measures the status of the paw at the end of the
evaluation time. The accelk terms in the fitness function indicate the values of
the accelerometer sensors in the three components (for k=x, y and z ). Their
limit values included in the fitness function were obtained by measuring them
under controlled conditions, and allowed to determine when the robot felt down.

Results

Due to both the simplicity of the fitness function used and the large range of
movements that the leg can perform when the evolutionary process begins it
was not possible to evolve a correct controller for the task. During the first
generations of the evolutionary process, most of the controllers received a zero
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Figure 4.21: Sequence of movements with one successful controller. Initial po-
sition is selected at random by a prepared algorithm. Final position is decided
by the controller, i.e., is not a fixed position.

fitness reward, hence, the evolutionary search cannot gradually proceed towards
a controller that finally achieves the desired behaviour. This means that the
evolutionary process suffered from bootstrapping (see section 2.2).

A way to solve this problem is to use incremental evolution (see section 2.4.1).
Using this method, the robot is taught to do the task by teaching it a set of easier
versions of the final task. This method is used to reduce the searching space and
to allow convergence to a suitable controller in a shorter amount of time. Hence,
an additional experiment was performed where incremental evolution was used.
The whole evolutionary process was split into seven different evolutionary stages:

1. First, teaching the dog how to touch the ground from a fixed position very
close to the ground.

2. Once it has learnt how to do this, the initial position was changed to a
further (but still fixed) position.

3. Then, the initial position was moved to one even further, but a small
random element was also introduced into the initial position.

4. The next evolution involved a position farther from the ground with a
bigger random element in the initial position.

5. The addition of randomness was repeated two more times.

6. The final evolutionary step included a completely random position at the
start.

By using this method, the robot was able to evolve the ground touching
behaviour along 30 generations in 4.2 days. This test was used only as a proof
of the concept. Due to the long time required for the test the results obtained
were not averaged over several evolutionary runs.

4.3.4 Third test: learning to stand up

The third test performed made use of both simulator and real robot. The goal
for this test was the evolution of the DAIR controller in the simulator, and then
to transfer it to the real robot in order to validate the result obtained. For this
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Figure 4.22: Fitness evolution for the second Aibo test. The figure on the left
shows the fitness evolution in one single round. The figure on the right shows
the fitness for the incremental evolution setup.

Figure 4.23: The third test specification: the robot starts at the position on the
left, and it must change its position to the position on the right.

85



4.3. USING THE ARCHITECTURE IN A COMPLEX ROBOT

test, a complete transfer system was created for both the simulator and the real
robot. This transfer system contained all the required code for the simulator
that allowed a feasible modelization of the robot, and a code for the transference
of the controllers from the simulator to the real robot, without requiring any
change in the evolved controller. A complete description of the work done in
the simulator and server system is provided in Appendix A and additionally in
[Holh et al., 2006].

The task selected for the robot was to learn how to change from a laying
down position to a standing up one. This task was especially interesting as it
is not straightforward to obtain the sequence of movements which lead to the
standing up position of the robot. The reason for this is that a direct movement
of the joints from the initial position to the desired position of standing up will
end up with the robot falling down. The fact is that when torques to the motors
are not performed in a correct sequence the robot falls down.

Setup

The same architecture as in the standing test was used for this test, with 31
IHU’s used for the same devices (12 joint motors, 12 motor sensors, 3 accelerom-
eter sensors and 4 paw sensors).

Evolutionary parameters

The same parameters as in the test of the standing test were used for the
evolutionary algorithm (shown in table 4.5). The fitness function was defined
on a first instance as follows:

fitness = final height

where final height is the height achieved by the robot when the evaluation has
ended. However, this function in some cases led to situations like the one shown
in figure 4.24, where a strange position evolved even though the robot achieved
the standing up. In order to eliminate such solutions the fitness function was
modified as follows:

fitness = paws ∗ final height

where paws indicates the number of paw sensors that are activated at the end
of the evolution time.

Results

Figure 4.25-top shows a sequence of movements obtained for the final behaviour.
Almost the same behaviour was obtained in the ten evolutionary runs, with a
mean number of 10 generations to obtain such behaviour. The maximal mean
fitness value obtained was 462 (see figure 4.26). Due to the fact that the height
sensor is situated in the head of the simulated robot the final position achieved
by the robot is a bit different from the one specified in figure 4.23, since the
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Figure 4.24: A sequence of movements for a strange standing up behaviour
evolved with a fitness function without the paws term.

Figure 4.25: Sequence of figures showing the change from a laying down position
to a standing up position in both simulation (top) and real robot (bottom).

robot tries to keep its head as high as possible. The final position of the robot
was however close enough to the desired one.

Once the behaviour of figure 4.25-top was obtained, the best DAIR tactical
controller was transferred to the real robot using the simulator transference
facility that we developed. The behaviour observed in the real robot is shown in
figure 4.25-bottom, and does not present a significant difference when compared
with the behaviour obtained in the simulator.

4.4 Conclusions

In this chapter, two different approaches to modular neural control have been
identified; one which performs modularization at the behavioural level (strate-
gic), and another one which performs modularization at the device level (tac-
tical). We identify strategic modularization with already existing architectures
for the creation of modular controllers. We define the concept of tactical modu-
larity as a new one, which deals with modularization at the level of the elements
that actually perform a sensorimotor coordination. Based on this idea, a dis-
tributed control approach for the control of complex robots has been created.
The approach includes sensorimotor coordination as the central tenet, massive
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Figure 4.26: Evolution of the fitness for the third Aibo test, averaged after ten
evolutionary runs.

modularity, double closure and bias introduction.
Strategic and tactical modularity are not excluding one from the other. For

a given controller the use of one type of modularity, the other type or a combi-
nation of both may be more convenient. Selection of one type or another should
depend on the complexity of the robot and the task to perform.

The use of tactical modularity has proved to work on simple and complex
robots, in both simulator and in real robot, and with different combinations
of evolutionary processes (only simulator, only real robot, or a combination of
simulation and real robot). Experiments have shown that the defined architec-
ture works in those situations. Some preliminary results show that the use of
tactical modularity when compared with a monolithic controller may imply an
improvement in the maximal fitness reached. An in depth study of this question
is provided in the next chapter, where the tactical approach is compared with
several other architectures and a benchmarking is provided.
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5
Architecture benchmarking

The novel methodology presented in the previous chapter will be extensively
tested and compared with current approaches in this chapter. Khepera robot
simulations will be used as test bed. The experiments will consist of implement-
ing a DAIR control system for the Khepera robot while it performs a test bed
task. The DAIR architecture’s performance will be compared with the results
obtained by state of the art neural architectures on the same task.

The selected test bed task is referred to as the garbage collector experiment,
and it follows the description given in [Nolfi, 1997]. In this task, a Khepera
robot is placed inside an arena surrounded by walls (figure 5.1); the robot looks
for sticks that have been randomly distributed in the space, grasps them, and
takes them out of the arena. This test bed is particularly interesting as it is
not a simple direct task like avoiding enemies or following walls, but requires
a more complex behaviour; evolution of classification from scratch; a complete
change in the robot’s behaviour based on a single sensor measure. When the
robot is not carrying a stick in the gripper its behaviour involves avoiding walls,
looking for sticks, approaching them, and finally picking them up. When the
robot is carrying a stick the opposite behaviour is needed, i.e. it should avoid
the other sticks and approach walls in order to release the carried stick out-
side the arena. The concepts of strategic and tactical modularity in all their
combinations (monolithic controller, strategic only, tactical only, strategic and
tactical) will be tested.

5.1 The garbage collector problem

All the experiments described using the Khepera robot were carried out under
simulation. As a simulator, the commercially available Webots simulator by
Cyberbotics was selected. As well as having the simulation of the Aibo robot
used in the previous chapter, Webots contains the simulation for many other
robots, including the Khepera robot.

89



5.1. THE GARBAGE COLLECTOR PROBLEM

Figure 5.1: Simulation of the garbage collector problem in the Webots simulator.

5.1.1 The environment

The complete set-up for the garbage collector experiment is shown in figure
5.1. It consists of a rectangular, 60x35 cm arena which is surrounded by walls.
Inside the arena there are five cylindrical sticks which will perform the role of the
garbage; each stick has a diameter of 2.3 cm and is randomly positioned inside
the arena for each new epoch. To simplify the problem the sticks are placed
with enough separation between each other and the wall to avoid overlapping
detection. This means that robot sensors cannot detect several sticks, or a stick
and a wall at the same time. Thus, if sensors are activated at any time, it
would mean that the robot is detecting either a wall or a single stick. Finally,
at the beginning of each controller evaluation, - otherwise known as an epoch,
the robot is randomly placed inside the arena.

5.1.2 The robot

The Khepera robot is a miniature mobile robot developed at EPFL in Switzer-
land. It has a circular shape with a diameter of 55 mm, a height of 30 mm, and
a weight of 70 g. It is supported by two motorized wheels, with two small Teflon
balls which serve as balancing points.Wheels are controlled by DC motors with
an incremental encoder, and they can move in both directions, backwards and
forwards. In addition, the robot is equipped with a gripper with two degrees of
freedom. The simulation of the Khepera includes the simulation of the Khep-
era gripper that the robot uses to grasp objects (see figure 5.2). The Khepera
gripper is composed of an arm that can be moved at any angle from vertical
through to horizontal, and two gripper fingers that can assume either an open
or a closed position. The gripper is also incorporates a sensor that indicates the
presence of an object between the fingers.

The robot contains eight infrared (IR) sensors; six at the front of the robot,
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Figure 5.2: Simulation of the Khepera robot including the Khepera gripper.
Red lines indicate the range of the infrared sensors.

and two at the back. One presence detector sensor is situtated in the gripper
fingers. Only the six front sensors and the gripper sensor were used for the
garbage collector task. Those have been marked in the 5.2 figure from A to F
for the front IR sensors, and G indicating the gripper sensor. IR sensors have a
limited detection range (from 0 to 30 cm), and they provide 1024 different values
from 0 to 1023 which indicate the presence of an object at the corresponding
distance. Objects placed at a distance exceeding 30 cm are not detected at all.
The IR sensor model includes a noise model that affects the measurements.

As actuators, the robot has two motors (left and right), and it is also able
to control the position of the gripper arm and the status of the gripper fingers
(open or closed). In order to keep things as simple as possible the same method
as in [Nolfi, 1997] has been used for the control of the gripper turret through
the use of two separate procedures which activate a complete behaviour. When
either of the gripper procedures is activated the gripper will perform a complete
series of movements which cannot be interrupted until they have been finished.
The gripper procedures are as follows:

• pick-up procedure. This is activated to make the robot pick up an object.
As a pre-condition, the robot must have its arm up and the gripper fingers
open. When activated, the following movements are performed: move the
arm down, and once completely down close the gripper fingers. In case
the robot has not captured anything between its fingers, it will open it’s
fingers again. The procedure ends by moving the arm up. At the end of
this procedure, the robot will have it’s arms up, and fingers open (in the
event that no stick was captured) or closed with a stick in between them
(if a stick was captured).
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• release procedure. This procedure is activated to make the robot release
a stick that is between its fingers. The movements are as follows: robot
moves arm down, opens gripper fingers, and moves arm up again. It can
be activated at any moment, even if the robot is not carrying a stick.

Of course the controller knows nothing, neither about the behaviour of those
procedures nor when they have to be activated. The evolutionary process will
have to generate the appropriate controller which activates those procedures
when necessary. Procedures are activated on an ON-OFF basis, i.e., they will
be taken as if they were actuators which can be controlled with two possible
values: an on value when activation is required, or an off value when activation
is not required.

Values detected by the IR sensors (a value between 0 and 1023) are lin-
early encoded as floating point values between 0.0 and 1.0 to become inputs
of the neural networks. The activation of both motors by the networks output
is transformed into 21 integer values ranging from -10; for a maximum speed
backwards, to +10; for a maximum speed forward. The activation of the pro-
cedures follows a thresholded output, where a neural network output above 0.5
will mean procedure activated, and an output below 0.5 will mean procedure not
activated. Sampling time in the simulator is 100 ms. The activation of any
of the procedures requires 20 time steps where the robot does nothing but the
execution of the activated procedure.

5.1.3 The evolutionary process

Experiments used the evolutionary algorithm ESP to evolve the connections
of a set of different neural network-based controllers to correctly perform the
garbage collector task, that is, to look for a stick while avoiding walls, pick up
the stick, and then release it outside the arena whilst avoiding other sticks. The
task was considered solved when the robot achieved the release of one single
stick outside the arena. It was considered failed if no stick was released at the
end of the evaluation time, or if any of the following errors were produced:

• The robot crashed into a wall

• The robot released a stick on top of another stick

• The robot tried to grasp a wall

To compare the performance of the DAIR architecture with other existing
ones, the same setup was used for the evolution of 6 different neural architec-
tures, described in the 5.2 section . The ESP algorithm was used to evolve a
suitable controller for each of the given architectures. The same evolutionary
parameters were used in the algorithm for the evolution of all the architectures;
these are described in the 5.1 table .

During the evolutionary process each generated phenotype needs to be tested
on the task at hand. Due to the random nature of the process, and since sticks
and robot are randomly initialised at the beginning of the test, fitness for a
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Table 5.1: ESP parameters used in the evolution of all the architectures tested
on the garbage collector problem.

Parameter Name Parameter Value
Subpopulations 1

Size of subpopulations 40
Mutation rate 0.8

Stagnation no stagnation allowed

given phenotype is obtained by testing the same phenotype 15 times, that is, 15
epochs. Each epoch lasts for either 200 time steps of 100 ms each, or until a stick
is released outside the arena. After each epoch, the fitness for the phenotype at
that epoch is stored. The final fitness for a phenotype is calculated as the mean
value of the 15 epochs.

A unique fitness function was created for the evolution of each of the archi-
tectures (except for the (e) architecture , which requires special treatment, as
will be described below). The fitness function rewards the controllers that have
been able to release one stick outside the arena. Controllers that are only able
to pick up one stick but not release it outside the arena are awarded with a
lower fitness. Controllers that were able to pick up a stick but released it inside
the arena were severely punished. The definition for the fitness function is the
following:

fitness =







1 if stick released outside arena

0.1 if stick picked but not released

−0.5 if stick released inside arena

�

�

�

�5.1

Each evolutionary process lasts for 1000 generations and was performed ten
times for each architecture. The results presented below show the average fitness
value of those ten runs for each architecture. A detailed list of the fitness
evolution for each evolutionary run and architecture can be found in appendix
D.

Architecture (e) is based on a strategic+tactical controller which is composed
of two different strategic modules (see section 5.2). Hence, the controller needs
to be evolved in two stages with two different fitness functions. In the first
stage, the strategic module in charge of avoiding walls and picking up a stick
was evolved with fitness function:

fitness =

{

1 if stick picked up

0 otherwise

For the second stage, the process evolved the strategic module in charge of
avoiding sticks and approaching walls to release the stick, using the following
fitness function:

fitness =







1 if stick released outside arena

−0.5 if stick released inside arena

0 otherwise
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In the same way as experiments in [Nolfi, 1997], a special mechanism was
implemented which artificially placed another stick in front of the robot each
time it picked one up. This artificial mechanism allowed an increase in the
number of situations where the robot encountered an obstacle in front of it
whilst carrying a stick. In [Nolfi, 1997] it was observed that evolved controllers
were not able to generate a robust behaviour for the avoidance of sticks while
carrying another when this procedure was not introduced into the evolutionary
process. The reason for this is that because of the small number of sticks in the
arena few occasions of encountering a stick while carrying another arise during
the evolutionary process.

5.1.4 Additional configuration

When reproducing the garbage collector problem in the simulator, a free inter-
pretation of some minor simulation factors not described in [Nolfi, 1997] was
made. These include the following:

• The pick-up procedure is activated to pick a stick up, but no stick is picked
up: in this case, an additional term was added to the pick-up procedure;
that whenever it detected that its gripper fingers were closed without
having a stick in them, it opened it’s fingers again, before moving up the
gripper.

• ANN’s activating both grasping procedures are activated at the same time:
preference was given to the pick-up procedure. Other possible solutions
would be to randomly select one of the procedures, or select the one with
the highest activation value.

• The pick-up procedure is activated while carrying a stick: in this case,
we did nothing with the gripper, but the execution time of the activated
procedure was discounted from the total number of time steps available
for evaluation of such phenotype. This choice results in a soft penalization
of the controller.

• A stick is picked up and then released inside the arena: this situation was
taken into account in the fitness function (see the 5.1 equation ).

5.2 Tested neural architectures

Six different architectures were tested with the set-up described above. They
represent a set of controller modularity concepts based on current literature as
described in chapter 3. The 5.2 table shows a summary of the architectures
tested, along with their identifiers used along this text. The first three architec-
tures are those tested in the original experiments in [Nolfi, 1997], which can be
compared with the new ones we introduced; they basically implement strategic
modularity in one way or another. The last three architectures make use of
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Table 5.2: Table of architectures tested.
Architecture identifier Type of architecture

(a) Monolithic
(b) Distal strategic modular
(c) Emergent modular
(d) DAIR tactical modular
(e) DAIR strategic+tactical
(f) Tactical with no sensor modules

tactical modularity. They are all described below and can be seen ranging from
figure 5.3 to figure 5.8.

Architecture (a) : monolithic feed-forward architecture with no modular-
ization (figure 5.3). It is a simple 7-4-4 feed-forward network with four units
in the hidden layer, seven inputs corresponding to the six infrared sensors and
the gripper sensor, and four outputs that control the two-wheel motors and the
two gripper procedures. This is a typical single neural network controller used
in most evolutionary robotics experiments [Nolfi and Floreano, 2000].

Architecture (b) : distal strategic modularity (figure 5.4). This is a strategic
modular architecture composed of two strategic modules. Division into strategic
modules has been performed using a hierarchical procedure. Since the robot
behaviour switches to its opposite behaviour depending on the state of the
gripper (carrying or not carrying a stick), two modules were generated: one
module for robot behaviour when not carrying a stick and looking for one,
and a second module acting when the robot is carrying a stick and tries to
release it outside the arena. This division of the controller into two modules
has been manually carried out from our own distal point of view. Each module
is implemented by a simple feed-forward network without hidden units. The
inputs of the modules receive the information coming from the sensors, and
outputs encode actions for the motors and procedures. The state of the gripper
sensor decides which module is activated at any given time.

Architecture (c) : emergent modular architecture, using proximal strategic
modularity (figure 5.5). This architecture was defined in [Nolfi, 1997] as emer-
gent modular architecture. Sensors are connected to the ANN’s inputs and each
actuator is controlled by two modules. Each module is composed of a neural
network consisting of seven inputs (for the seven sensors) and two outputs; the
output of each group thus consists of four units. The two units of the first
module produce two possible actuator action commands for each actuator. The
two units of the second module determine which of the two units of the first
module will actually drive the actuator. Module one generates two possible
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commands for the actuator. Module two decides which of the two command
should actually be used to drive the actuator. The two outputs of the second
module compete, and the highest output value wins and then decides the actual
command. This process is performed for each time step. This architecture is
interesting in the sense that it is a modular architecture where the combination
of modules for the generation of the behaviour is not decided beforehand, but
by the same evolutionary process. Thus, the modularity of this architecture is
in some sense emergent.

Architecture (d) : DAIR architecture using tactical-only modularity (figure
5.6). It is a direct implementation of the tactical modularity concept to the
robot and the task, where a unique global behaviour is required to evolve, that
is, the garbage collector behaviour. In this case, tactical modularity solves
the whole problem by creating one IHU element for each device involved (one
tactical module for each device). Since eleven devices are involved, - seven
sensors and four actuators, eleven IHU’s are required for the construction of
the controller. An IHU was created for each of the infrared sensors as well as
four IHU’s for the left and right motors and the two gripper procedures. Each
IHU is implemented by a feed-forward neural net with eleven inputs, no hidden
units, and one output (see figure 5.9).

Architecture (e) : DAIR architecture using strategic + tactical approach
(figure 5.7). This architecture includes the use of both strategic and tactical
modularity in a single controller. In this case, the required behaviour is divided
into two main strategic modules, each one in charge of one sub-behaviour (as in
architecture (b)). Each of those strategic modules is then modularized at the
device level using tactical modularization, the same as in the (d) architecture.
This case is a clear example of the application of both the strategic and tactical
modular concepts to solve the control problem. Two different strategic modules,
each one implementing one sub-behaviour by means of tactical modularity are
obtained. The switch between strategic modules is based on the status of the
gripper sensor. The training of each strategic module is carried out by sepa-
rate evolutionary processes, and once evolved, they are combined to design the
global controller. For the training of the first module the robot is placed in a
random position, and the evaluation ends successfully when the robot picks a
stick without performing an error. The second module evaluation starts with
the robot in a random place carrying a stick. The evaluation ends successfully
when the robot releases the stick outside the arena without performing an error.

Architecture (f) : tactical approach without sensor IHU’s (figure 5.8). An
additional half-modularized tactical architecture was included to test the utility
of sensor IHU modules. In the formal definition of the architecture, sensors are
directly connected to their associated IHU’s, and actuator IHU’s only receive
the processed signal from the sensors generated by their associated IHU; never
receiving a straight reading of the raw sensor value. In section 4.2.6, it was
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Figure 5.3: Architecture (a): monolithic feed-forward architecture with no mod-
ularization.

shown that the use of a sensor IHU improved the fitness value. It would appear
to be a sound assumption to think that having a dedicated neural network for
a sensor may serve as a pre-processing element and assist in the robot control.
It is not clear however whether the computational cost is worth the increased
complexity level of the schematics. We will see how useful the sensor IHU’s are
on a medium size complexity example by comparing the results obtained with
this architecture. As will be shown later, sensor IHU’s proved very useful for
robot control.

5.3 Comparison of results obtained

Figure 5.10 shows the evolution of the average fitness over generations for the
different architectures. A complete list of the fitness evolution of each simu-
lation can be found in appendix D. The results obtained with the first three
architectures were very similar to those reported in [Nolfi, 1997], where those
architectures were compared in the same task. Small differences related to the
maximal fitness obtained may be appreciated, though not with regards to the
behaviour of the architectures and their relation in performance. These differ-
ences may be due to either the use of a different evolutionary algorithm or to
the minor details described in the 5.1 section.

From these results we can conclude that all the architectures evolved the cor-
rect behaviour. The only difference between them is the convergence speed and
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Figure 5.4: Architecture (b): using distal strategic modularity.

Figure 5.5: Left figure: architecture (c), using proximal strategic modularity.
Right figure: detail of the two modules that control one of the robot’s actuators.

98



5.3. COMPARISON OF RESULTS OBTAINED

Figure 5.6: Architecture (d): DAIR architecture using only tactical modularity.
For the sake of simplicity the IHU’s and their connections are represented by
blocks. Arrows represent the interconnections between all the IHU’s as was
specified in the case of four IHU’s in the simple example of section 4.2.6 (figure
4.9).

Figure 5.7: Architecture (e): DAIR architecture using strategic + tactical ap-
proach.
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Figure 5.8: Architecture (f): a tactical approach without sensor IHU’s.

Figure 5.9: Neural network used in each IHU module of architectures (d), (e)
and (f).
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Figure 5.10: Number of epochs (out of 15) across generations in which individu-
als with different architectures (except architecture (e)) correctly picked up and
released a target object outside the arena. Each curve represents the average of
the best individuals in 10 different simulations.

0 200 400 600 800 1000
0

5

10

15

Generations

M
ea

n 
nu

m
be

r 
of

 s
uc

ce
sf

ul
 ta

sk
s

Pick stick behav.
Release stick behav.

Figure 5.11: Number of epochs (out of 15) in which each of the architecture
models (e) correctly performed their task (module 1 to pick up a stick, and
module 2 to release the stick). Each curve represents the average of the best
individuals in 10 different evolutionary processes.
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Figure 5.12: Number of times out of 10 that each architecture was able to reach
maximum fitness.

the maximal fitness achieved, that is, the number of successful epochs (averaged
over 10 evolutionary runs). Results obtained by the emergent architecture (c)
and the two tactical modular ones (d) and (f) are very similar, and superior to
the results achieved by the monolithic approach (a) or the strategic modular
approach (b). The tactical DAIR controller is the architecture that achieves the
maximum fitness, - even though it takes longer than the others to obtain an
acceptable behaviour (its evaluation speed is slower when compared with most
of the architectures).

Within the tactical architectures, the semi-modularized architecture (f) per-
forms below the completely modularized architecture (d), indicating that the
extra architecture modularization in (d) indeed performs a useful function. How-
ever, the (f) architecture achieves a fairly competent level of expertise substan-
tially faster than (d) (it is the fastest architecture to achieve a fitness over
10). This may be due to the fact that the search space for the (f) architec-
ture is smaller than for (d), initially allowing for a quicker improvement (until
it reaches a plateau). Additionally, the (e) architecture which combines both
types of modularity is also able to master the task. Both of its modules evolved
the maximum fitness very quickly (see figure 5.11).

Figure 5.12 shows a comparison between architectures indicating the number
of times out of 10 that each architecture was able to reach the maximum fitness
(15). Architecture (e) was considered to have reached maximum fitness only
when both groups of tactical controllers did so. Again, results for the highly
modularized architectures (namely, (c), (d), (e) and (f)) were better than those
of the less modularized ones (architectures (a) and (b)).

Additional test

An additional test was introduced in order to test the robustness and real perfor-
mance of the solutions. Robustness is understood as the capacity to generate a
controller to solve the garbage collector task in the greatest number of different
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(random) situations. The use of a performance metric permits us to measure
the architectures not only in terms of fitness but also in terms of the behaviour
obtained. It provides a kind of measuring system of the behaviour obtained that
goes beyond mere maximum fitness score, and measures the general behaviour
obtained in a much broader context.

The test consisted of adding an additional step to the evolutionary process;
whenever the controller being evaluated was able to remove one stick from the
arena in each of its 15 epochs flawlessly, an additional game started. This extra
game consisted of performing a complete round where the robot had to take the
five sticks out of the arena without making any errors (as described above, an
error consisted of crashing into a wall, releasing a stick inside the arena or on top
of another stick, or trying to grasp a wall). If the extra game ended correctly
with all five sticks released within the predetermined timeframe (set to 2000
time steps) the fitness for that phenotype was increased by 10 units, and another
extra game was started. The starting of these extra games continued until the
robot made an error during the game, or it was not able to extract the five sticks
within the 2000 time steps. As the number of extra games solved increases, the
robustness of the controller increases correspondingly, since it means that the
controller is able to solve the problem in more different situations.

This extra game allowed the evolution of more robust controllers; performing
the whole task of collecting the five sticks in more diverse conditions. Fitness
evolution with this extra game is shown in figure 5.13. In this case, the emergent
modular architecture was the most robust, achieving the highest number of
consecutive correct games. It was followed by the two tactical architectures (d)
and (f). Additional results depicted in figure 5.14 show the averaged maximum
number of times that each architecture ended a game before an error occurred.

There was no significant difference between the highly modular architectures
(c), (d) and (e), but it should be pointed out that in terms of robustness the
emergent modular architecture achieved the best results.

5.4 Discussion

By comparing the different architectures, it can deduced that highly modular
architectures (c), (d) and (e) outperformed all the other architectures in all
aspects. It can be seen that tactically modular approaches produce similar
results to those achieved with emergent modular architecture. Tactical modu-
larity outperforms emergent modularity in terms of average fitness, and obtains
the maximum fitness value the same number of times, while the emergent mod-
ular architecture correctly completes more games. From these results, it can
be concluded that the differences between the two architectures are not very
significant. Larger differences exist between the three highly modular architec-
tures, the monolithic neural network and the distal-strategic ones in all aspects:
evolution speed, maximal fitness attained and the robustness of the solution
found. Hence, the first conclusion that can be drawn from the results is that
architectures with a higher level of modularity perform better than less mod-
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Figure 5.13: Evolution of fitness when the extra game with five sticks is added.
Results averaged out over 10 evolutionary runs.

Figure 5.14: Maximum consecutive number of times that each architecture com-
pleted a game of releasing the five sticks outside the arena without making an
error.
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ularized ones. This result is in line with the main idea used in this thesis, by
which a modular approach behaves better than a non-modularized one, and that
modularity is required for complex behaviours.

Differences between emergent and strategic architectures exist at the con-
ceptual level. In the case of the emergent modular architecture, modularity
is performed in a strategic manner. The architecture requires the number of
modules available for the evolutionary process to be specified beforehand. In
the case presented here the architecture was provided with 2 modules; their
optimal combination for the behaviour required was determined by the evolu-
tionary algorithm. The complexity of the behaviour to be evolved must lay
within the range given by the number of modules available for combination.
Tactical modularity on the other hand does not require this module allocation,
and the complexity of the behaviour generated is only limited by the complexity
of the ANN used as processing element. In tactical modularity the evolutionary
algorithm does not evolve the correct combination of modules for the behaviour
required, but rather evolves an internal categorization of the behaviour, that is,
it identifies which sub-behaviours are required for the target behaviour from a
proximal point of view.

A strange result is obtained with architecture (b). Even if its modularization
degree is higher than architecture (a), its results are poorer and far beyond the
results of architecture (a). The explanation to this effect may be explained by
the problem of genetic linkage [Calabretta et al., 2003].

Genetic linkage affects evolutionary processes where two or more behaviours
of differing complexities are required, and the ability of the evolutionary process
to evolve the easier behaviours first prevents the evolution of the more difficult
behaviours later. What happens here is that since both modules are being
evolved at the same time, one of the tasks to be solved is simpler to evolve than
the other, which means that the fitness increases by evolving the genotypes
that better solve the easier task. Once the genotype has reached the maximum
fitness possible for that task, the fitness should improve by evolving the genotype
towards solving the other more complex task, but by that point the genotype is
so biased in the fitness landscape that it cannot possibly modify the genotype
to accommodate the other task without losing performance in the other. This
problem is due to the impossibility of evolving both tasks at the same time.
In [Calabretta et al., 2003] the effects of genetic linkage are shown applied to
the what and where task [Jacobs et al., 1991a], a similar problem in terms of
modularity to the garbage collector. A solution was proposed based on sexual
reproduction which partially solves this problem.

The problem of genetic linkage between modules can be completely avoided
if separated evolutionary processes for each module are used. This is the case for
architecture (e), where two different modules are evolved in different tasks using
different evolutionary processes. In this case, two strategic modules were decided
on from a distal point of view, and each strategic module was implemented by
tactical modularity. The evolution of each strategic module is done in separated
evolutionary processes, each one with its own fitness function. This mechanism
allowed the controller to master each task separately and then combine them
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into a single controller solution.
It must be recognized that sometimes it is not that clear as to how to di-

vide a global behaviour into different simpler behaviours and perform different
evolutionary processes for each one, as have been done here for the garbage col-
lector. This is in fact one of the problems still to be solved in behaviour-based
robotics. For these cases, the use of tactical modularity only is proposed (archi-
tecture (d)), which has been shown to be a lot better than strategic modularity
alone (architecture (b)). For those cases, tactical modularity can improve the
behaviour obtained especially if the robot is complex. Additionally, in the case
of complex robots and complex tasks, tactical modularity offers the possibil-
ity of performing a progressive design of the controller, as will be explained in
chapter 6, where a tactical-only controller is evolved for a complex robot.

In conclusion, from the results obtained it can be deduced that, generally
speaking, highly modular architectures perform better than less modularized
ones; and, even if it is possible to generate a monolithic controller for behaviour
generation (as in architecture (a)), a highly modular approach is preferable if
maximum performance is desired.

5.5 Additional results with a complex robot

In an additional set of experiments, the performance of the architectures was
compared by using the complex robot Aibo. For these experiments, only the
three most significant architectures were compared when evolving a controller
for the Aibo stand up behaviour defined in section 4.3.4. In this task, the
controller should learn how to stand the Aibo robot up from a lying position.
The comparison was performed based on maximal fitness, fitness speed, and
final pose achieved by the three different controllers. Architectures tested were
the monolithic one (a), the emergent modular (c) and the DAIR tactical (d).
Fitness function and ESP parameters used were the same as in section 4.3.
Neural networks for each architecture were created in the following way:

• For the (a) architecture, the controller was based on a feed-forward net-
work composed of 19 inputs corresponding to the 12 joint sensors, 4 paw
sensors, and 3 accelerometer sensors. The network contained a hidden
layer of 12 units. Finally, 12 output neurons were required for the control
of the 12 joint motors. The algorithm thus evolved a total of 392 neural
connections.

• For the (c) architecture, the emergent neural controller was designed with
19 inputs, for the same input as in the (a) architecture and two groups
of 24 output units for the control of the 12 joint motors, according to the
way the emergent modular works (see figure 5.5). The algorithm evolved
a total of 456 neural connections in this case.

• For (d) architecture, the controller relied on 31 connected DAIR tactical
modules with 31 inputs, 8 hidden units, and 1 output each. The algorithm
was evolving a total of 7936 neural connections.
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Figure 5.15: Comparison of the averaged fitness evolution for the three archi-
tectures (centralized, emergent modular and DAIR tactical).

Figure 5.16: Final positions obtained by the best controller obtained in the ten
evolutions of each architecture. From left to right, architecture (a), (c) and (d).

The evolutionary process was performed ten times for each controller, and
the fitness evolution was averaged for each architecture. Every evolutionary run
lasted for 30 generations; long enough to obtain the desired behaviour.

5.5.1 Results

Figure 5.15 shows a comparison of the averaged fitness evolution for each archi-
tecture, and figure 5.16 shows the final position obtained for each of the three
architectures.

Results obtained are similar to those in the case of the garbage collector.
The three architectures performed the required behaviour. Maximum fitness
was obtained by emergent modularity, with only a small difference to tactical
modularity. Final pose is very similar in all three cases. These results indicate
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that modular approaches obtain better results than monolithic ones. These
results show how important and powerful modularity is, especially in a case like
this, where the number of connections to evolve was quite different between the
monolithic approach and the modular ones.

5.6 Conclusions

An exhaustive comparison between different modular controllers making use of
these types of modularization in different combinations has been provided for
the garbage collector problem, and the following conclusions can be listed:

• Modular architectures performed better than monolithic ones.

• The greater the degree of modularity, the better the fitness results ob-
tained.

• Even if a monolithic controller can be evolved to perform a determined
behaviour, a tactical modular version of that controller has performed
better. Three different experiments have shown this result: the simple
robot contour-following experiment in section 4.2.6, the Khepera garbage
collector experiment in the 5.1 section, and the Aibo stand up experiment
in the 5.5 section .

• A monolithic approach can be effective if no genetic linkage effect is pro-
duced (though hard to know before hand).

• A strategic modularization in separated evolutionary processes avoided ge-
netic linkage in previous works. The DAIR approach proposes this method
as the best one to create complex behaviours.

• Tactical modularity can either be combined with strategic modularity
or used alone. Any combination has outperformed less modularized ap-
proaches.

• If a strategic evolution of two or more modules in separated processes is not
possible, a simple tactical modular controller can improve the controller
obtained by other approaches.

• Distributed modularization at the sensor level has helped to improve the
fitness of a tactical modular controller.

Among the advantages of using a DAIR architecture in evolutionary robots
stated in this chapter, the architecture presents two other interesting features
that could become important in the generation of complex evolutionary robotics;
namely progressive design and internal representation. The former will be ex-
plained in the next chapter, and the latter in chapter 8.
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evolution

The DAIR architecture was introduced in chapter 4, and was applied to the
control of both a simple wheeled robot and a complex legged one; however,
the task evolved in all cases was a simple one. This chapter introduces one of
the strengths of this architecture for the evolution of a complex coordination
in a complex robot, namely progressive design. With the use of progressive
design, the architecture minimizes the drawbacks of large search spaces and
the bootstrap problem when evolving a controller for a robot whose body, task
and environment are complex and determined beforehand. The main goal in
progressive design is the generation of a tactical modular controller in stages.
In the same manner as the DAIR architecture describes a modularization of the
controller, the DAIR progressive design method provides a modularization of
the learning procedure.

Basically, the progressive design process works as follows: at the beginning of
the evolutionary process a limited number of modules are evolved in a bounded
evaluation task. Following this the rest of the modules are added in succes-
sive stages, with only the newly added modules and their connections with the
already evolved ones in previous stages being evolved. The final global con-
troller is then gradually evolved in a process referred to as progressive design of
complex neural controllers. The key point of this method is the level at which
modularization of the neural controller was performed by the DAIR architecture
definition. This new modularization level replaces the usual functional modular-
ization (used in other approaches) with a device modularization, thus allowing
a customized introduction of knowledge for each tactical module.

This chapter provides an in-depth description of the progressive design method
for complex robots. A simple application of the method for the garbage con-
troller problem of the previous chapter is first shown. Next, an application of
this design to the complex Aibo robot is used for the generation of a walking
gait.
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6.1 Introduction

This chapter addresses the generation of complex sensorimotor coordinations
for complex robots within the evolutionary robotics framework. By complex
sensorimotor coordinations we understand controllers coordinating several sen-
sors and actuators to generate a behaviour in several stages. The complexity
of a behaviour will be defined based on the number of different stages that the
evolutionary process will use to evolve such a behaviour. Of course the complex-
ity of the behaviour will depend on the architecture adopted in the first place.
This means that a given behaviour may present a different complexity for two
different architectures. This fact may be useful to compare how architectures
can decrease the complexity of a behaviour.

When facing complex controllers for complex robots in evolutionary robotics,
it is preferable to insert as little human knowledge (otherwise known as bias) as
possible in the evolutionary process. Bias determines to a certain extent the path
that the evolutionary process must follow, thereby reducing the dimensionality
of the evolutionary search. On the other hand, the inserted bias influences the
evolutionary search towards a certain type of solution, limiting the amount of
possible solutions that the evolutionary algorithm could potentially generate.

We however, claim that it is practically impossible to generate a controller
under the conditions stated without introducing bias, as the artificial evolution-
ary algorithm is trying to reproduce the effects of natural evolution in unfair
conditions. While natural evolution gradually evolved the animals body plan,
their sensors and actuators, their nervous system and even their environment at
the same time, artificial evolution tries to evolve the nervous system of a robot
for a given morphology, group of sensors and actuators, and within a given com-
plex environment. Even if this method has worked in some simple examples,
as was shown in chapter 2, 4 and 5, no such satisfactory results exist for com-
plex robots due to both the large search space that the algorithm has to face,
and consequently, the bootstrap problem. And so, the principle that some con-
straints should be relaxed if a controller is going to be evolved for such complex
robots is defended in this thesis. Since robot morphology, task and environment
are fixed and complex, one possibility is to relax the bias constraint.

6.1.1 Similar works

The evolving by stages concept, being one of the clearest examples of the use of
incremental evolution (see section 2.4.1) has already been used in literature. In
incremental evolution, controller evolution follows a progressive complexification
of the task to evolve. The evolutionary process begins with an easy-to-reach task
which is related to the goal task. The designer then successively increases its
complexity towards the goal task. In this case, bias information is introduced
in the decision of the sequence of challenging tasks. This approach has in fact
worked well in relatively complex tasks with simple robots [Islam et al., 2001],
but successful use in complex robot has to date not been reported.
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In [Urzelai et al., 1998, Dorigo and Colombetti, 1998] special attention is paid
to the possibilities that a modular architecture for gradual shaping offers, that
is, incremental training of independent behavioural competencies. The prob-
lem dealt with here centres on how much human design should be included in
combination with learning algorithms in these processes to find a solution for
the problem . As a consequence, the entire learning activity should be orga-
nized in the appropriate way. The BAT methodology (Behaviour Analysis and
Training) was proposed. It consists of performing a rational organization of the
main phases of the robot controller design, which are: application description,
behavioural analysis, specification, training and behaviour assessment. In this
process, the design and implementation of the robot’s physical body as an im-
portant part of the process was also included. In the first step, the creation of
a sufficiently detailed description of the robot, the environment and the target
behaviour is laid out. In the second step, an in-depth analysis of the behaviour
required is used to break such behaviour down into a set of simpler behaviours.
The third step involves the creation of the sensorimotor structure necessary for
that behaviour. The fourth step is about the implementation of the behaviour
modules and their interconnections: either by hand or through an automatic
mechanism. A training system must then be provided to train the modules.
The final step is the assessment of the obtained controller in the task at hand,
which could lead to a repetition of all the design steps if the results are not
satisfactory.

The BAT work is interesting for the DAIR approach in the sense that it
also stresses the importance of a careful analysis of the behaviour required and
the knowledge already available for its generation; however, it also lacks an
application for complex robots.

Other staged approaches to manually design a modular architecture are those
whose modules are completely decided on by the designer by taking inspiration
from biological systems. In such cases, designers decide which modules to use,
how to construct them and how to connect them to each other. Some biological
inspiration is certainly incorporated, but a lot of ad-hoc information is also used.
An example of this methodology is [Ijspeert, 2001, Hallam and Ijspeert, 2003]
for the generation of a walking and swimming lamprey. In this case, the concept
of Central Pattern Generator (CPG) is used. A CPG is a group of neurons which
generate as output an oscillatory pattern from a non-oscillatory input. It has
been proven that CPG’s are behind the walking mechanisms of some animals,
and it has been further suggested that the same may be true for humans. It
could be said that this work performs a staged evolution. In staged evolution,
incremental evolution can be used not only to modify the fitness function at
every stage but also the neural structure to evolve at those stages.

A different case of biological inspiration used for staged evolution is that
in [Manoonpong et al., 2005], where we see the evolution of a modular neural
controller for the control of a four legged reptilian shaped machine. The same
CPG concept is used to drive robot motors. The control mechanism was compli-
mented with a neural module for velocity control and another to process sensory
inputs. However, many ad-hoc solutions were used in this example.
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Other staged approaches use human intuition: [Lara et al., 2001] in the
evolution of neural modules and their interfaces, or [Muthuraman et al., 2003,
Muthuraman, 2005] in the evolution of modular controllers for the generation
of walking robots. This latter system is aimed to be applied to the growth of
any type of neural structure (walking control, vision control, and others). In
[Doncieux and Meyer, 2004] bias information is used to help the evolutionary
process to decide which of the controller’s connections are likely to be useful.
In [Nelson et al., 2003b], fitness functions with two (or more) different modes
are used. The first mode rewards the controller when it has been incapable of
completing the task, and uses a subjective measure (completely determined by
the designer) of the uncompleted task, with the second mode only providing a
reward when the task is achieved.

All the listed works use bias information in different evolutionary stages. The
adaptation of the controller in different stages, that is, staged evolution, implies
that there is a modularization at the learning level [Auda and Kamel, 1999],
whether the neural structure is modular or nonmodular. On the other hand
modularization of the neural architecture is an alternative. The complete DAIR
architecture description incorporates both types of modularization at its very
foundation. Hence, from the works described, for the evolution of a neural
controller for a complex robot, the process should:

• Use external information

• Break the controller down into modules

• Break the learning process down into stages

The rest of the chapter will show how the DAIR architecture is well situated
to implement those three requirements, and how it is best suited for the selective
introduction of external information in selected modules.

6.2 Progressive design of neural controllers

In previous chapters, tactical modularization has been used to generate con-
trollers when the behaviours evolved were simple. This means that most of
them only required a single stage to be evolved. However, a complex behaviour
could be required, not even a tactical modularization is able to obtain a suit-
able controller. For this reason, a learning mechanism has been designed which
implements staged learning, with bias information playing a primary role. The
DAIR approach includes the use of the concept of modularity in learning to-
gether with modularization in architecture as a solution to the evolution of
complex controllers. In fact, as we will see below, our tactical modularization
approach presents significant benefits for the use of modular learning.

As well as how to modularize a neural architecture in order to obtain a fitness
improvement having been introduced in previous chapters, in this chapter how
to modularize the learning process using our modular architecture will be shown.
This procedure is called progressive design.
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6.2.1 Description

This section describes our progressive design method to minimize the effects of
large search spaces and the bootstrap problem when evolving a controller for
a robot whose morphology, task and environment are fixed and complex. It is
based on staged evolution, and extends it by providing a standard building block
and evolutionary method for any robot, independent of its number of sensors or
actuators. In the progressive design method, architectural modularity is created
at the robot device level by creating a small and independent neural module
around each of the robot’s sensors and actuators. This change in modularity
has in chapter 5 been proven to be more effective than other modularization
approaches, and it additionally adds the advantage of allowing a very flexible
learning modularization.

In the progressive design approach, tactical controller evolution is performed
in several stages, as follows:

Setup. Let’s assume we have a complex robot with a huge number of sensors,
M , and actuators, N . The vector of perceptions y is defined as the vector
containing all the values for the sensors,

y = {yk}
M
k=1

The vector of actions u is aso defined as the vector containing all the
commands generated for the actuators,

u = {uk}
N
k=1

Therefore, the input size of each ANN module, - for either a sensor or an
actuator, will be equal to the number of modules, that is:

num.inputs = size{y}+ size{u} = M + N

For this robot, a goal-task tg is given which is associated to the behaviour
required for the robot. The goal is then to build a distributed DAIR
controller composed of M+N modules, which achieves tg.

First stage. A subset of the sensors m ≤ M , and actuators n ≤ N of the
robot is selected by the designer depending on the evolutionary strategy
to be performed. This is the first place where bias is introduced, since
the designer decides which and how many devices are used in this stage.
Now, a tactical modular controller for each of the m + n selected devices
is designed using the method described in chapter 4; by assigning one
IHU module to each selected robot device. A simple evaluation task t1
is also designed to evolve this group of modules, related to the final goal
tg in some sense, and relevant to the selected devices. Since the required
task is decided on by the designer, this is the second point where bias
is introduced. Task t1 is associated with a fitness function f1. Hence,
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Figure 6.1: The first example of the progressive design of a neural controller for
a simple robot with two sensors and two actuators. In stage one (top), only one
IHU for sensor 1, and one IHU for motor 1 are evolved, using a given fitness
function f1, and obtaining the controller on the top. In stage two (bottom), two
additional IHU’s (for sensor 2 and motor 2) are added to the controller. At this
stage, only those newly added modules and their connections to the previously
evolved modules (red lines) are evolved by using a different fitness function f2.
Bias information is used to decide which IHU’s are going to be evolved first,
with which combination and using which fitness function. Hence, the designer
requires knowledge of the domain .
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the neural modules of those sensors and actuators selected are evolved
together in the simple task t1 using fitness function f1.

yt1 = {yk}
m
k=1 , ut1 = {uk}

n
k=1

num.inputst1 = size{yt1} + size{ut1} = m + n ≤ M + N

Iteration. Once the small group of m + n controllers has gained proficiency
in their evaluation task t1, the values of their connections are frozen and
a new evolutionary stage begins. For this new stage, a new and different
sub-group of the robot’s m′ sensors and n′ actuators is selected for the
evolution of their modules. Their neural modules are added to the previ-
ously evolved group of modules, as well as interconnections between the
modules of the first evolution and the new ones. The weight values of the
connections with the old ones (in dotted lines in figure 6.1) are initially
started with small values, resulting in a slight modification of the already
evolved behaviour in the previous stage. Now the sensor and actuator
vectors of the DAIR controller have increased in size as follows:

yt2 = {yk}
m+m′

k=1 , ut2 = {uk}
n+n′

k=1

num.inputst2 = size{yt2} + size{ut2} = (m + m′) + (n + n′) ≤ M + N

The evolutionary process is started again, but only for the newly added
modules and their connections to the modules of the previous stage (red
lines in figure 6.1). For this new stage, the evaluation-task is changed to
a new task t2 that may be different from the previous t1, although this is
not mandatory. It is important to note that the new task t2 deals with
the whole group of modules, even if only the newly added ones and their
connections with the modules of the t1 task are evolved. The evolution
will continue until the group of devices gains enough proficiency in task t2.
Once a certain level of proficiency in task t2 is reached, a new stage starts,
where more sensors and actuators are added, and the evolutionary process
is iterated until the final number of M+N modules is reached. More and
more of the robot’s sensors and actuators are progressively added, and the
evaluation task they perform modified. Eventually, the total number of
sensors and actuators should be reached, and the final global task required
should be mastered by the controller.

6.2.2 Discussion

The idea behind progressive design is as follows: start evolving a subset of
modules in a related evaluation-task, and then progressively increase the number
of modules that are evolved in related evaluation-tasks. The key point is that the
evaluation-task is only related to that subset of modules that is being evolved
at that particular stage. By doing this, the subset of modules establishes the
coordination required between each other for the resolution of their associated
evaluation-task. When the new modules are added in a second stage for the
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evolution of a second evaluation-task, the new modules will need to learn the
newly assigned evaluation-task, but at the same time they will (slightly) modify
the already existing evaluation-task evolved in the previous stage (by means of
the new connections with the old modules). When this procedure is repeated
through all the required stages and modules the final controller is gradually
shaped into the desired controller.

On this first approximation to the progressive design method, the addition
of new modules to an existing controller implies the evolution of new input
weights in the previously evolved modules. These connections mean the effect
of the newly added modules over the old ones. However, it is not guaranteed
that this direct connection will allow the evolution of a coupled controller that
performs the required behaviour, in fact, what is happening is that the influence
on the old modules is a simple linear combination output of the newly added
IHU’s. A more complex influence may be required; for instance, additional
connection neurons may be used that act as a coupling between groups, as
shown in [Lara et al., 2001]. The addition of such coupling neurons would allow
smoother and more complex interactions between different groups of modules.
These more complex solutions have not been explored here, and their study is
left for the future.

The evolution of modules in stages allows for the minimization of the draw-
backs of the two main problems of evolutionary robotics previously described,
namely a large search space, and the bootstrap problem. First, by evolving a
limited number of modules at each evolutionary stage of a simplified task the
searching space for the evolutionary algorithm is kept narrowed. Secondly, by
evolving new modules keeping the functionality obtained in previous stages, the
likelihood of encountering a bootstrap problem is reduced, since the evolution
of the newly added modules depart from a previous stable solution which can
be scored, and thereby drive the evolutionary path from the initial generations.
This effect will be clearly seen in the example shown in section 6.3.

On top of that, there is an additional advantage of using this method. Due
to the modularity of the controller performed at the device level it is possible to
easily insert external knowledge for the evolution of any device or combination
of them: separated groups of modules can be trained in different tasks, and
then be merged into a single DAIR controller simply by evolving connections
between them; the evolved group of modules can be reused by performing a
copy of the controller evolved for a group of devices to control another group of
devices which are exactly the same (e.g., modules controlling a robot right arm
can be duplicated to control the left arm). This architecture allows a powerful
use of external knowledge, because knowledge will affect only those elements
concerned.

As indicated in [Urzelai et al., 1998, Dorigo and Colombetti, 1998], adapta-
tion in modular architectures can take place at two different levels: within a
module and between modules. It is clear that our architecture acts at both
levels; within a module, since each tactical module is adapted to control its
associated device, and between modules, because connections between tactical
modules are carefully adapted for the generation of a coordinated behaviour.
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In fact, when symmetry appears in a problem, the tk task can be evolved for
one single group sensor-actuator, architectural results can be copied to the sym-
metric group, and then evolve the upper task tk+1 by evolving the connections
between both groups (as depicted in figure 6.2). Either way, it is up to the
designer to decide the best schema for the given task, based on the available
information.

6.3 Application to Khepera garbage collector

This section will show an application example of the progressive design method-
ology for a simple robot, - the Khepera garbage collector, in order to illustrate
how it works. The selected test bed follows the description provided in the pre-
vious chapter. It will be assumed that it is not possible to evolve the required
behaviour for the robot in one single evolutionary round (as we know, this is
not true, since it has already been obtained in chapter 5). An application to a
complex robot in a complex task will follow in the next section.

6.3.1 Experiment setup

Experimentation will follow the description of the same setup in chapter 5.
Basically, experiments consisted of 15 epochs of 200 time steps each, where an
evolved controller was tested in the task. The duration of each time step is 100
ms. Epochs end after 200 time steps or after a stick had been correctly released
outside the arena.

The final goal is the generation of a tactical modular controller for the Khep-
era robot to solve the garbage collector problem. The controller will be com-
posed of eleven modules: six infra-red sensors, one gripper sensor, two motors
and two gripper procedures. Each neural module was implemented using a feed-
forward neural net with no hidden units and only one output. At the beginning
of the progressive design of the controller, the number of inputs of those nets
will depend on the number of elements selected for the first evolutionary stage.
In any case, at the end of the progressive design the neural net for each module
will have eleven inputs.

6.3.2 Progressive design strategy

The architecture was evolved using the progressive design process based on a
three stages procedure. In the first stage, not all of the sensors were used to
reduce the number of weights to be evolved. Only seven modules were evolved:
three sensors and all four of the actuators. In successive stages, new sensors
were added increasing the proficiency of the robot in the task, and hence the
fitness obtained.
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Figure 6.2: Second example of the progressive design of a neural controller for a
simple robot with two sensors and two actuators. Available information about
the task to evolve indicates that it is symmetrical, i.e., the job performed by
the sensor-1 and motor-1 (for instance, a right arm) should be the same as
the job performed by sensor-2 and motor-2 (a left arm). Hence, in the first
stage, a group of one sensor-one actuator is separately evolved on task t1. The
obtained controller is then duplicated for the control of sensor-2 and motor-2.
In the second stage only the connections between both groups are evolved in
the final task tg (connections in red line) obtaining the final controller.
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Figure 6.3: First stage for the evolutionary controller: only seven modules were
evolved, corresponding to three sensors and four actuators.

6.3.3 First evolutionary stage

In the first stage, evolution was started using as few sensors and actuators as
possible in order to maintain a small initial search space, as well as the robot
performing at some low degree the garbage collector task. It was decided that
the two front IR sensors were to be used as a minimum to discriminate between
sticks and walls. For grasping and releasing sticks the gripper sensor is required,
as well as the two wheel motors and take and release procedures, a total of seven
IHU’s (figure 6.3),

yt1 = {ySc, ySd, ySg} , ut1 = {uMl, uMr, uPt, uPr}

A fitness function was designed for the evolutionary process to reward the
controllers for releasing a stick outside the arena. An additional term was added
which rewarded robust controllers, that is, controllers that performed the stick-
releasing behaviour without performing any errors; errors included crashing into
walls, releasing sticks inside the arena or on top of another stick, or trying to
pick up a wall. Controllers that were able to pick up only one stick were also
rewarded with a lower fitness value.

fitness =















1 if pick up stick

100 if stick released outside arena

110 if stick released without errors

0 otherwise

�

�

�

�6.1

Similar to experiments in chapter 5, a special mechanism was implemented
which artificially added a stick in front of the robot each time it picked a stick
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Figure 6.4: Genotype encoding for the first stage of the Kephera garbage col-
lector.

up. Each evolutionary process lasted for 1000 generations. Each genotype was
encoded according to the schema in figure 6.4.

After 1000 generations, the maximum fitness obtained was 1531 out of 1650.
The behaviour obtained, even though sub-optimal, permitted the robot to solve
the task. Due to the stochasticity of the method employed the evolutionary
process was performed ten times, obtaining a mean fitness value of 1021. Eight
out of ten evolutionary processes were able to generate the garbage collector
behaviour within 1000 generations. Figure 6.9 shows the evolution of the mean
fitness value over generations.

6.3.4 Second evolutionary stage

The second stage began by selecting the best group of modules evolved in the
previous stage from the ten evolutionary runs performed. These modules were
frozen in their evolution, that is, they were not evolved any further. We refer
to them as the S1-modules or S1-controller. Next, two new sensor IHU’s were
added to the controller; namely, the ones corresponding to the control of the
two diagonal IR sensors (sensors B and E as defined in figure 5.2),

yt2 = {ySb, ySe, ySc, ySd, ySg} , ut2 = {uMl, uMr, uPt, uPr}

During this stage, only the weights of these two new modules and their
connections to the already existing S1-modules were evolved. The genotype for
this stage, that is, what was actually evolved, was encoded as indicated in figure
6.6.

New connections between the output of the new modules and the inputs of
the old modules were randomly initialised by the evolutionary algorithm with
very low values of between -0.001 and 0.001, and evolved in separated sub-
populations. Each sub-population contained the new connections from all the
new modules to one old input.

For this particular task and combination of sensors and actuators, the fitness
function used in this stage is the same as in the previous one, as defined in the
6.1 equation. For other cases, the fitness function can change at this point if
necessary in order to implement a different task, starting from the knowledge
of the task learnt in the previous stage. This is not the case for the garbage
collector problem, and the same fitness function can be used even if the structure
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Figure 6.5: Two additional sensor modules were added at the second stage (in
red).

Figure 6.6: Genotype for the second stage of the Kephera garbage collector.

121



6.3. APPLICATION TO KHEPERA GARBAGE COLLECTOR

Figure 6.7: Two additional sensors were included at the final stage, (in red).

of the controller has changed. An example of a task requiring the fitness function
to change at each stage will be discussed in section 6.4.

Figure 6.9 shows the evolution of the mean fitness value over generations
for this stage. Looking at the fitness evolution, it can be observed that at the
beginning of this new evolutionary stage the fitness obtained at the very first
generation is lower than the maximum obtained in the previous stage due to
the interference that the newly added connections are producing in the solution
found in the previous stage. However, the fitness of this first stage generation
is not low, since the neural weights obtained in the previous stage represent a
solution point in the fitness landscape near to the final solution. After 1000
generations the maximum fitness reached was 1650 out of 1650. The evolution-
ary process was performed ten times, obtaining a mean fitness value of 1570
after 1000 generations. All ten evolutionary processes were able to generate the
garbage collector behaviour.

6.3.5 Third evolutionary stage

At the third stage, the IHU’s for the two lateral sensors were introduced (sensors
A and F, see figure 6.7). The same procedure as in the previous stage was used.
The best controller evolved in stage-2, which contained modules from stage-1,
was selected and its evolution frozen,

yt3 = {ySa, ySfySb, ySe, ySc, ySd, ySg} , ut3 = {uMl, uMr, uPt, uPr}

Only the two newly added modules and their connections to the already existing
ones were evolved. Again, the fitness function defined in the 6.1 equation was
used for this stage. The genotype was encoded as illustrated in figure 6.8.
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Figure 6.8: Genotype for the third stage of the garbage collector.
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Figure 6.9: Mean fitness evolution through generations for all the stages. The
dotted line shows the fitness evolution obtained when the eleven modules are
evolved in one single stage (result obtained in chapter 5). Values have been
averaged over ten evolutionary runs in all cases.

For this stage, the fitness evolution had the same behaviour as in the second
stage, that is, the fitness obtained in the first generation of this stage is a slightly
reduced value from the maximum obtained at the end of the previous stage.
However, at this stage, the reduction is smaller than the reduction experienced
at stage two. Our hypothesis is that the solution found at the previous stage is
very related to the solution with two more sensors. In fact, the task is the same
but uses two more sensors, so that the solution only has to accommodate the
action of the newly added sensors.

After 1000 generations the maximum fitness value is 1650 out of 1650. The
evolutionary process, performed ten times, leads to obtaining a mean fitness
value of 1647 after 1000 generations. All ten evolutionary processes were able
to generate the garbage collector behaviour. Figure 6.9 shows the evolution of
the mean fitness value over generations.
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6.3.6 Comparison with one single-stage evolution

The previous chapter demonstrated that it is possible to obtain the garbage
collector behaviour for the eleven modules in one single stage. This is due to
several facts, which include the low complexity of the robot used, the simplicity
of the task to be solved, and the power of the architecture and evolutionary
algorithm. If the case of one single-stage evolution is compared with the pro-
gressive design approach, it can be observed that the mean fitness value of the
former is 1645, a fitness slightly below the mean fitness obtained by progres-
sive design (1647). Figure 6.9 shows the evolution of the mean fitness value
over generations (dotted line), compared with the evolution of the fitness of the
other stages.

Furthermore, in the case of single stage evolution, nine out of ten evolution-
ary processes were able to evolve a maximum fitness garbage collector behaviour,
while in the case of the progressive design all of the controllers from the last
stage were able to generate the garbage collector behaviour (10 out of 10). Even
though both approaches obtained similar results, a small improvement has been
attained of the progressive design in terms of maximal mean fitness achieved
and number of times that the behaviour evolves. This results seem reasonable,
since in the progressive case the controller is carefully built step by step start-
ing from previously known domains, which allows for a smoother evolutionary
process.

However, the improvement in fitness obtained may not be worth the com-
plexification of the evolutionary process. This complex procedure may only
be required in more complex situations where the single-stage evolution is not
possible. This is the situation depicted in the next section.

6.4 Aibo walking

The results presented in the previous section show how the methodology works
for a simple case. However, the main aim of this methodology is its use in
complex robots. This section shows results obtained when the methodology
is applied to the Aibo robot for the generation of a walking behaviour. The
generation of such a behaviour is a complex issue, since Aibo endows 12 DOF’s
related to walking, with no head or queue DOF being taken into account. Each
leg has 3 DOF’s that must be coordinated between all the legs. It is easy to see
that a miscoordination in one single joint may cause the robot to fall. In fact,
there is no work to date in literature that shows a straight evolution of a neural
controller for a walking behaviour for such a robot. By straight evolution we
refer to a single controller evolved using either a single fitness function or an
incremental one. All previous works on this subject evolved separated parts in
different processes and then attached them, as we will see below.

For the generation of the walking gait only the motors in the leg joints and
those corresponding joints sensors will be taken into account. Neither the paw
sensors nor the accelerometers will be used in this case since it seems unnecessary
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for a walking gait. The whole process will be carried out in simulation, and once
finished it will be transferred to the real robot and tested on it1.

It must be stated that the goal of this section is not to show how a walking be-
haviour must be performed in a quadruped robot. Generating a walking gait for
a quadruped in a highly complex robot with several DOF’s is a rather complex
task, and has been solved using non-linear dynamic CPG equations in several
studies such as [Lewis et al., 1992, Collins and Richmond, 1994, Reeve, 1999,
Lewis, 2002, Markelic, 2005]. The primary goal is to show how such a complex
behaviour for such a complex robot can be evolved using the progressive design
method. Furthermore, the walking gait presented here can be optimised for en-
ergy consumption, velocity or aesthetics. It is also stressed that the progressive
design method is a general methodology for use in the evolution of any robot
and/or behaviour. This thesis shows just two possible applications (the garbage
collector for a Khepera robot and the walking for an Aibo robot).

6.4.1 Technical issues: joint control

A typical method for the control of a joint position is by indicating what the
position of the joint should be at each time step. This method, referred to as
control by position, is the most commonly used in most trajectory definition
methods for walking robots. The trajectory to be applied has been calculated
or designed beforehand, and once it is acknowledged as correct it is applied to
the robot.

Another type of control is possible, known as control by torque or otherwise
stated control by velocity. In this type of control, the control signal indicates
the torque that the joint has to apply at a given moment, which results in a
velocity in the joint. The Webots simulator implements both types of controls,
and it is therefore up to the user to decide which one to use. However, due to
the inner workings of the simulator, only velocity control will be possible for
this experiment:

in Webots, the mechanism underlying the control of a joint is composed
of three differentiated phases which work as follows [Cyberbotics, 2005]: every
joint has a defined maximum speed and a maximum acceleration. Once a given
position for a joint is ordered, the joint then starts accelerating at the maximum
acceleration rate from zero velocity to the maximum velocity of the joint. Once
the maximum velocity is reached the joint remains moving at that velocity. Just
before reaching the required position for the joint, the joint starts decelerating at
the maximum deceleration rate. At the end of the process, the joint achieves the
required position with zero velocity. This process has been represented in figure
6.10. If the correct joint position is close to the final desired one, then there
will be no time to perform the constant velocity phase, and only a two-phase
acceleration-deceleration behaviour will be observed.

1Visit our webpage at www.ouroboros.org/thesis for additional information, including
videos of the results obtained, related papers, and source code for the implementation of
our results in your own Aibo robot.
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Figure 6.10: Figures showing the behaviour of a joint in the Webots simulator.
In the left figure, the starting position of the joint is far away from the desired
final position, and the joint therefore has to start from zero velocity, accelerate
at maximum acceleration, maintain maximal velocity and then decelerate. In
the figure on the right, the starting position is close to the desired final one, so
the movement of the joint has no time to reach maximum velocity state, and
just the two phases of accelerating-decelerating can be observed.

The problem with this approach is that when a position-controlled behaviour
is implemented, all the inertia and velocity of the joint at the desired position
is lost since it will reach that position at zero velocity. Even if this behaviour
can prove useful for some determined control types, this is not in the case of
walking, since a dynamic behaviour is required (inertia is used by the walking
mechanism). Therefore, a control by velocity will be used. In a control by ve-
locity, the controller does not indicate the position that the robot has to reach
but rather its velocity. So in our experiment, the neural controllers will set the
joint speed at each time step. In order to keep it simple only two velocitites
will be allowed: maximum velocity in clockwise direction, and maximum veloc-
ity in counterclockwise direction. Even with this simple reduction of options,
joints will have to handle acceleration and deceleration stages when changing
the rotation direction.

6.4.2 Technical issues: neuron model

Technical analysis will begin with the type of ANN to be used in the IHU models
for the generation of the gait controller. In previous examples, feedforward
neural networks with or without hidden units were used. In this case a neural
network able to capture dynamics is required due to the dynamic nature of the
task to evolve. Requirements are:

• Since the task is a dynamical system in cycle-limit, the ANN has to provide
internal states and/or continual dynamics.

• Mathematical complexity should be kept as low as possible in order to
reduce the computational load.

• Oscillatory patterns should be generated from a tonic signal.

In [Reeve, 1999, Reeve and Hallam, 2005] there is an exhaustive analysis of the
characteristics, advantages and drawbacks of different types of neural networks
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for walking behaviours. Based on the listed requirements and the available
options, the Continuous Time Recurrent Neural Nets (CTRNN) [Beer, 1995]
model was selected. This is a model complex enough for the generation of
acceptable walking gaits, and without the computational complexity of more
accurated models. This type of network has also proven useful in generating
walking behaviours using neural nets [Gallagher et al., 1996]. A CTRNN will
be used in each IHU processing element to make it simple and homogeneous,
even if in principle this would only be required for the actuators.

CTRNN’s [Hopfield, 1984] are composed of a set of interconnected hidden
neurons modelled as leaky integrators that compute the average firing frequency
of the neuron (see figure 6.11) with output neurons following the standard per-
ceptron output. CTRNN hidden unit outputs are computed using the following
equations:

τi

dmi

dt
= −mi +

∑

wijxj

xi =
(

1 + e(mi+θi)
)−1

where mi represents the mean membrane potential of the i-th neuron, that is,
the output of the network; xi is the short-term average firing frequency of the
i-th neuron; θi is the neuron bias; τi is a time constant associated with the
passive properties of the neuron’s membrane; and wij is the connection weight
from j-th neuron to i-th neuron. Calculation of each neuron output is performed
using the Euler method for solving differential equations [Salzmann, 2003] with
a given step of 96 ms. This value was found to be a useful tradeoff between the
minimum value required to capture the dynamics and the time delay introduced
by the execution of the software.

A neural net similar to the one shown in figure 6.11 was used for each IHU
neural element; where the number of inputs equals the number of devices to
control, i.e. 24; the number of hidden units is five, and the number of output
units is one. Inputs represent the connections of a given IHU to the rest of
modules, and the output is the answer from that IHU to its associated element
(sensor or actuator).

For each of the networks’ hidden units it is necessary to evolve: the con-
nection weights for inputs and outputs, its bias term θi and its time constant
τi. So, the genotype for each hidden unit will contain those values in a direct
encoding scheme (see figure 6.12). Initially, the values of the parameters for
all the neurons are randomnly created around certain values. Weights are ini-
tialised in the range from -16 to 16, as specified by the ESP algorithm. For
the bias, the initial values of between -16 and 16 were also taken. For the time
constant, values were between 0.5 and 10. Those values were decided based on
experiments depicted in [Seys and Beer, 2004].

6.4.3 Single stage evolution of a walking gait

Before applying the progressive design method we will show how a direct evolu-
tion of the walking behaviour in one single stage leads to failure, with no walking
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Figure 6.11: Schematics of the CTRNN used in the walking controller.

Figure 6.12: Genotype for the evolution of the leaky integrator inside the
CTRNN number 1, with k inner connections. The Genotype encodes all the
network parameters for the evolutionary process.
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Figure 6.13: Mean fitness obtained for the single stage DAIR architecture walk-
ing behaviour.

behaviour emergence. Results shown in [Reeve, 1999] will be used as point of
departure. There, the evolution of the walking behaviour of a simple simulated
quadruped robot with 8 DOFs was achieved using the distance travelled by the
robot as a fitness function.

6.4.3.1 A single stage using tactical modularity

Based on the results in [Reeve, 1999] for a more simple robot, the DAIR tacti-
cal modular architecture was applied to the walking task. A DAIR controller
composed of 24 IHU’s, that is, 24 CTRNN’s, was designed. Hence, the search
space to be faced for the algorithm consists of 3840 values to evolve: (24 inputs
+ 1 output + 5 recurrent connections + 1 bias + 1 time) * 5 hidden units *
24 nets. The evolution of the DAIR controller was tried for ten different runs,
every run lasting for 30 generations. The fitness function used was,

fitness = distance advanced
�

�

�

�6.2

None of the 10 controllers evolved was able to perform steps however, and
all the runs ended in local minima with the robot lying on the ground trying
to drag itself over the ground. In fact, this reptilian behaviour (see figure 6.14)
allowed the robot to obtain a few points from the fitness function.

Using symmetry

As a second attempt, symmetry was applied in the same way as in [Reeve, 1999],
since the robot morphology is symmetric. This means that only one half of the
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Figure 6.14: Sequence of the Aibo walking pattern obtained when a single stage
evolution is used.

Figure 6.15: Mean fitness obtained for the single stage DAIR architecture walk-
ing behaviour, when using symmetry.

robot can be evolved, and, at the moment of testing, it duplicates the half
controller to the other half of the robot. Using this plan, a reduction of half
the search space is obtained. The same fitness function as in equation 6.2 was
used. After repeating the 10 runs of 30 generations each, none of them was able
to evolve the walking behaviour. Behaviours such as those in figure 6.14 were
observed.

Using different fitness functions

Different fitness functions were used as an alternative. These were more com-
plicated fitness functions that rewarded crossing legs and penalized jumping
forward. Other more complicated add-on’s to the formula were also divided in
an attempt to generate an oscillation pattern, none of which was successful. An
example of an additional formula used is presented:
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Figure 6.16: Mean fitness obtained for the single stage DAIR architecture walk-
ing behaviour with fitness equation 6.3.

fitness =































0 if − 0.698 < J1 joints < 0.261

0 if 0.349 < J3 joints < 1.658

0 if less than three paws down

0 if paw not down after up

distance ∗ height otherwise

�

�

�

�6.3

Results

Even though an evolved walking behaviour for a certain simulated robot was
reported in [Reeve, 1999], we were not able to evolve it for the simulated Aibo.
Furthermore, we know of no other report indicating that it has been achieved
with an Aibo robot using only the distance travelled as a fitness function. The
main differences between our case and that of [Reeve, 1999] may be that of
Aibo’s simulation; also there is an additional degree of freedom on each of its
legs, moreover, Aibo has a very different physical structure which includes a
heavy chest, a head and a neck, as well as having feet with a shape that do
not only touch the ground at a single point, as in the case of [Reeve, 1999].
Furthermore, in the case of [Reeve, 1999] no sensor information was taken into
account. All these differences may explain the differences between our results
and those of [Reeve, 1999]. No more research on this subject was performed.
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Figure 6.17: Left: monolithic architecture for the evolution of the Aibo walking
behaviour in one single stage. Right: the emergent modular architecture used
for the evolution of the same behaviour.

6.4.3.2 A single stage evolution using other architectures

Before attempting the application of the progressive design method, we tried to
use the other successful architectures from chapter 5: the monolithic architec-
ture and the emergent modular (see figure 6.17). In the first case, the neural
controller had 12 inputs coming from the joint sensors, and 12 outputs going
to the joint motors. Unfortunately, the algorithm was clueless on this task for
a fitness function that rewarded controllers able to go forward, without falling
down while generating oscillations in the legs (that behaviour is described in
equation 6.3). However, none of the controllers achieved the generation of a sin-
gle step. The same unsuccessful result was obtained for the emergent modular
architecture. In this case the neural controller had 12 inputs and 24 outputs.
The same 6.3 equation was used as the fitness function.

Results obtained suggested more than a general problem of search space
dimension, but rather a problem of bootstrap, that is, the task to evolve is
so complex that processes are not able to find an evolutionary path from a
completely random controller for the full walking controller (if the path ever
exists!). It seems unlikely that any amount of knowledge will make any of the
architectures evolve the desired behaviour if this knowledge is directly applied.
Hence, we conclude that it is then necessary to use a progressive design for the
evolution of the walking gait.

6.4.4 The CPG concept for walking robots

One of the most important features of the progressive design method is the
use of external knowledge that help decide the evolutionary path to implement,
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Figure 6.18: Fitness obtained by the single stage monolithic architecture walking
behaviour and a single stage emergent modular architecture walking behaviour.

that is, the number of stages and their content; in evolutionary terms. For
this purpose, knowledge on walking robots is required. The concept of Central
Pattern Generator (CPG), the main concept used for the generation of a walking
pattern, is described here.

It has been extensively shown [Grillner, 1985, Collins and Stewart, 1993,
Calancie et al., 1994] that animals perform rhythmic movements such as walk-
ing or running by means of groups of neurons, known as CPG’s, which generate
an oscillatory pattern from a tonic input signal. Depending on the tonic signal
value, CPG’s can change its frequency of oscillations as well as its amplitude. It
is presumed that humans could also be controlled by such systems. Central pat-
tern generators is a methodology that has been widely used for walking robots
[Lewis et al., 1992, Ijspeert, 1998, Kimura et al., 1999, Billard and Ijspeert, 2000,
Ijspeert, 2001, Kimura et al., 2001, Ijspeert, 2002, Mojon, 2004, Markelic, 2005,
Manoonpong et al., 2005, Manoonpong et al., 2007].

CPG’s can be artificially created using ANN’s. These CPG’s will be the ones
to be implemented in the robot controller by using the distributed architecture.
In this work, a CPG will be implemented for the control of each joint. This
means that IHU modules will implement the CPG function. Aibo’s joints are
composed of a sensor which obtains the position of the joint at each instant, and
an actuator, which moves the joint. Since each joint has an associated sensor
and motor, the IHU’s of the sensor and motor will work together to generate
the oscillation that would drive the robot joint. Hence, a CPG is implemented
for each joint by coupling an IHU for the joint sensor, and an IHU for the joint
actuator (see figure 6.20).
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Differences exist however between our architecture implementation and real
CPG control in animals. Firstly, in the case of real CPG’s, only contiguous
CPG’s are connected to each other [Grillner, 1985]. In the DAIR implemen-
tation however, all the IHU’s are interconnected , which in practical terms
means that all CPG’s are connected to all CPG’s. Secondly, it is not clear
whether real CPG’s have direct connections to sensors or not. There is in-
deed a reflex system which uses sensor information to modify CPG behaviour,
but how this is achieved still remains largely unknown [Ijspeert, 2002]. In fact,
in artificial CPG-based walking systems the reflex mechanism is usually im-
plemented as an additional external system that works beside the oscillatory
system [Klavins et al., 2001].

In order to reduce the search space for the evolutionary algorithm not all the
connections of the DAIR controller are evolved at the same time as stated in sec-
tion 6.4.3. A progressive design will be performed, which guides the evolutionary
process towards a correct solution. The different stages for the generation of
the walking gait will be: generation of CPG oscillators, where a segmental os-
cillator is evolved for each type of joint; generation of two coupled CPG’s in
counterphase; generation of a layer of four CPG’s; and coupling of three groups
of four CPG’s to obtain the final walking behaviour.

6.4.5 Progressive design of a walking gait

The evolutionary strategy for the generation of the controller intensively uses
the CPG concept: the robot controller will generate a group of CPG’s, - one per
each joint; each one driving its corresponding joint with an oscillation signal.
Joint oscillators will be coordinated in the appropriate way so as to produce a
walking gait.

A fundamental point is that the generation of the oscillatory patterns will
not be performed externally of the robot, as has been the case in other works.
That is, the evolution of the oscillatory pattern is performed in the (simulated)
robot itself. This allows the neural nets to capture the dynamics of the (sim-
ulated) robot, producing an oscillatory signal that takes into account inertias,
accelerations, etc. These are all important features when dealing with a robot
as large and as complex as Aibo.

6.4.5.1 Progressive design strategy

The key point for the evolutionary strategy is that of generating an oscillation
for each joint, each one with its own required phase, and then to couple them all
into a single controller. Once this point became clear, its actual implementation
was divided into four stages: in the first stage, a controller that performs an
oscillation is generated for each joint using its associated motor and sensor.
At the end of that stage each joint has its own an independent oscillator that
drives it. In the second stage two oscillators from the same joint type but
from different legs are coupled in such a manner that they generate a single
controller driving both joints with an oscillation, but with a required phase
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Figure 6.19: Details of the three different joint types for the robot legs.

shift between them. In the third stage, two groups of two coupled oscillators are
again coupled, obtaining a group of four oscillatory joints driven by one single
controller. These three stages are repeated for the three types of joints that the
robot has (J1, J2 and J3, see figure 6.19), which leads to a situation where three
separated and independent controllers exist, with each one driving four joints
in a synchronized oscillation. The fourth stage evolves the connections between
those three controllers, generating a single controller for the whole robot, which
is then finally able to walk.

6.4.5.2 First stage: generation of the joint oscillator

The aim of this stage is to obtain a controller for a joint by generating an
oscillatory pattern for each type of robot joint. Joints in the robot’s legs are of
three different types, which we will call J1, J2 and J3. J1 is in charge of the
rotatory movement of the shoulder, J2 of the lateral movement of the shoulder
and J3 of the knee movement. Physical joints are controlled by using different
PID controllers, and, in addition, their movement limits are different. For this
reason, a different type of oscillator must be implemented for each joint type
so that the three types of oscillators will be evolved in separated evolutionary
processes in this stage. Nevertheless, the process for the generation of each
type is exactly the same, with the only practical difference being the range of
movements and the way the leg will be moved. The sensor and actuator vectors
for this stage t1 are then as follows:

yJ1
t1 = {yS−J1LF} yJ2

t1 = {yS−J2LF} yJ3
t1 = {yS−J3LF}

uJ1
t1 = {uM−J1LF } uJ2

t1 = {uM−J2LF } uJ3
t1 = {uM−J3LF }

An oscillator is implemented for each joint by coupling two CTRNN net-
works: one for the joint sensor and another for the joint actuator (the motor).
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Figure 6.20: Schematics of the coupling between two neural nets for the control
of a joint in stage t1. The figure shows the coupling between the joint sensor
IHU and the joint motor IHU.

The DAIR architecture described in chapter 4 is applied to a single joint com-
posed of two devices. The resulting controller is shown in figure 6.20. Both nets
are interconnected as specified by the architecture, but each one is in charge
of a different element: the sensor net is in charge of the sensor, and the motor
net in charge of the motor. The sensor reading is taken and entered into the
IHU sensor at each time step of the evaluation process. Then a certain output
is processed and sent to the IHU actuator. The output of the IHU actuator
specifies the motor’s velocity to be applied, once de-normalized, it is applied
directly to the motor.

The weights of the nets are evolved using both the ESP algorithm and a
fitness function rewarding the production of an oscillatory pattern in the motor
joint. The genotype used is depicted in figure 6.22. The exact pattern to be
obtained is not specified, but it is periodic and between certain oscillatory limits.
The following fitness function was defined for the evolution of such oscillations:

mean =
1

N

∑

xi

fitness =
1

N

∑

(xi − mean)2
�

�

�

�6.4

with xi being the joint position at time step i. Basically, fitness function calcu-
lates the variance of the trajectory followed by the joint. Thus, the evolutionary
process will try to maximize it, and the value of the variance will be maximum
when the position of the joint changes from one limit to the other.
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Table 6.1: Limits used for Aibo joints oscillations. It includes a calculated
mean value of the range for each joint. This mean value establishes the central
position of the joint around which the joint will have to oscillate. Values are in
radians.

Joint Max Min Mean
J1, fore 0.3936 -0.5837 -0.0950
J2, fore 0.3702 -0.2163 0.0769
J3, fore 1.1732 0.1435 0.6583
J1, rear 0.0059 -0.7848 -0.3894
J2, rear 0.4215 -0.2163 0.1026
J3, rear 1.6599 0.9907 1.3253

A single oscillation was obtained within the full range of the joint by using
the previous fitness function, that is, the joint oscillated one single time from one
limit to the other. Aibo joints can oscillate between very large limits, but these
are too large for an appropriate walking behaviour, and they must be limited by
defining a number of oscillation bounds. In order to keep it simple, limits were
defined by observing the walking bounds for the Sony’s default walking style.
These limits are included in table 6.1.

A new fitness function was defined to reward regular oscillations within the
joint bounds. The system is now required to generate a joint movement around
the mean value, with maximal variance within the limits for each joint. The
fitness function is then a product of two factors:

fitness = fit var ∗ fit cross
�

�

�

�6.5

where fit var is the variance of the joint position during the 200 evaluation
steps, as calculated in the 6.4 equation, and fit cross is the number of times
that the joint crosses in its movement through the mean positional value. The
addition of the second term to the fitness function favours the final oscillation
obtained not being limited to a single oscillation. This term also propriciates
the generation of very high frequency oscillations. However, with limited time
and speed, variance will decrease when frequency increases, and so the first
term regulates the increase of the second one. In any case, in order to avoid
sub-optimals with too high frequency oscillations, a limitation in the number of
possible crossings was established at 20.

In addition, each fitness factor was limited by a function that linearly varies
between 0.01 and 1.0 when its corresponding variable fluctuates between a good
and a bad boundary (see table 6.2). In other words, normalization was applied
to each factor in order to obtain a fitness value between 0.01 and 1 for either bad
or good results. This transformation allowed a clear vision of the evolutionary
state at any time. The transformation is calculated using the following formula:

F (f) = 0.99 ·
f − G

G − B
+ 1
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Figure 6.21: Transformation function for fitness normalization. Bad and good
values depend on the fitness function, and it is provided below in different tables.

Table 6.2: Variables and boundaries for the first stage’s fitness function.
Function Variable Boundary [bad,good]
fit var variance of the joint [-1.0 , 0.47]

fit cross n. of crossings [0.0 , 20.0]

where B and G are for the bad and good boundaries. Boundary values for each
stage are provided in the tables below.

Results

Seven runs were carried out for each type of joint starting with different initial
random populations. Each run was composed of 200 simulation steps of 96
ms. After 8 generations all runs converged to networks maintaining oscillations
within the range specified.

Figure 6.22: Genotype for the first stage of the Aibo walking.
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Figure 6.23: Fitness evolution of the three types of Aibo joints in one single
joint (first stage), averaged over seven evolutionary runs.

6.4.5.3 Second stage: generation of two coupled oscillators

In the previous stage, three different and independent controllers were obtained,
each one for the control of one type of the robot’s joints. Each controller was
composed of two tactical modules: one for the control of a sensor and another
for the control of a motor. The aim of the second stage is to obtain a controller
for two joints of the same type, which will result in a coupled oscillation within
a given phase relationship.

In this case, the controller will now be composed of four neural networks
(for each type of joint): two controlling the two motors and two controlling the
two sensors. Since we evolved the controller for one joint and its sensors in the
previous stage. First solution would be to evolve the neural modules for the
newly added motor and sensor, as well as the connections between these newly
added modules and those already existing for the previous joint, in the same
way as depicted in figure 6.1.

A quicker and simpler solution exists however, due to the fact that the new
joint to control is of the same type as the one controlled in the first stage.
It consists of performing a duplication of the modules created in the previous
stage for the new joint and just evolving the connections between modules. The
oscillator controlling one type of joint from the previous stage will be copied to
control the joint of the same type, i.e. the joint that is opposite the original
one, thereby obtaining two isolated oscillators; each one like the one displayed
in figure 6.20. Connections between both modules are then established in order
to apply the architecture definition, and only these connections need to be
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Figure 6.24: Oscillatory patterns obtained for all three types of joints in the
first stage. Each joint oscillates in its own range.
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Figure 6.25: Sequence of the oscillatory movement obtained in simulation for
the J1-type joint (left fore leg in the figure). During the first stage the robot is
lying on his side to allow for the free movement of the joint. The evolution of
the other joint types was performed with the same setup.

Table 6.3: Phase relationship, according to [Collins and Richmond, 1994], for
three common quadrupedal gaits.

Leg Walk Trot Bound
Left-Fore 0º 0º 0º

Right-Fore 180º 180º 0º

Left-Rear 270º 180º 180º

Right-Rear 90º 0º 180º

evolved in this stage (neither the internal connections of the neurons nor the
time constant and bias obtained from the previous stage will be evolved). A
phase relation of π rad between those two legs (in all types of joints) will be
required, as stated in table 6.3. It is important to note that the three types of
oscillators are completely independent yet from each type of joint at this stage,
and evolved in different evolutionary processes. So, each evolutionary process
therefore has to cope with a reduced search space only related to its associated
joint type. Hence the vectors are:

yJ1
t2 = {yS−J1LF , yS−J1RF } , uJ1

t2 = {uM−J1LF , uM−J1RF }

yJ2
t2 = {yS−J2LF , yS−J2RF } , uJ2

t2 = {uM−J2LF , uM−J2RF }

yJ3
t2 = {yS−J3LF , yS−J3RF } , uJ3

t2 = {uM−J3LF , uM−J3RF }

The fitness function will reward phase differences between the legs close to
the π rad, as well as a continuous oscillatory movement of both legs. Hence,
a fitness function containing these three components is proposed: the first two
components correspond to the fitness function that measures the oscillation of
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Figure 6.26: Genotype for the second stage of the Aibo walking

Table 6.4: Variables and boundaries for the fitness function in the second stage
Function Variable Bound [bad,good]
fit cross1 crossings joint 1 [0.0 , 20.0]
fit cross2 crossings joint 2 [0.0 , 20.0]
fit var variance of the 2 joints [-1.0 , 0.47]

each joint independently, and the third component corresponds to the fitness
factor that measures the variance between the movements of both legs, and tries
to maximise it.

fitness = fit cross1 ∗ fit cross2 ∗ fit var
�

�

�

�6.6

where fit var is the variance for the difference of positions between both legs
during the 400 evaluation steps, and fit cross1 and fit cross2 are the number
of crossings that each joint has performed through its mean position value.
Similar to the fitness function for the first stage, these factors vary between
0.01 and 1.0 when their corresponding variable fluctuates between a good and a
bad boundary (see table 6.4). The genotype evolved is depicted in figure 6.26.

Results

Seven runs were carried out for each type of joint to evolve the connections
between CPG’s. Each run was composed of 400 simulation steps of 96 ms.
After 9 generations 90% of the networks performed a counter-phase oscillatory
pattern.

6.4.5.4 Third stage: coupling the oscillation of four joints of the
same type

In this stage, the control for the rear two joints of the same type is added
to the controller. This means that four new neural modules will be added to
the modular controller: two for the control of the two rear joints, and two for
the two rear sensors. However, since the two front joints have the same phase
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Figure 6.27: Evolution of the fitness for the three types of joints in the second
stage, averaged over seven evolutionary runs.

relationship for a walking gait as the two rear joints have, it is possible to clone
the controller obtained in the second stage for the front joints to control the rear
joints, and then evolve only the connections between them. Hence the vectors
are:

yJ1
t3 = {yS−J1LF , yS−J1RF , yS−J1LR, yS−J1RR}

yJ2
t3 = {yS−J2LF , yS−J2RF , yS−J2LR, yS−J2RR}

yJ3
t3 = {yS−J3LF , yS−J3RF yS−J3LR, yS−J3RR}

uJ1
t3 = {uM−J1LF , uM−J1RF , uM−J1LR, uM−J1RR}

uJ2
t3 = {uM−J2LF , uM−J2RF , uM−J2LR, uM−J2RR}

uJ3
t3 = {uM−J3LF , uM−J3RF , uM−J3LR, uM−J3RR}

Since four new modules are added for the control of the two rear joints,
it is necessary to evolve 4 connections per network with a total number of 8
IHU’s per joint type. The evolution of the new connections is performed us-
ing a fitness function which rewards controllers that achieve an oscillation of
all the legs with a given phase relationship between them, as specified in the
6.3 table. For a typical walking gait the relation from left to right and from
front to rear is 0º,180º,270º,90º. In the previous stage, due to the fact that the
phase relationship was of 180º a simple algorithm for the calculation of that
relation was performed; based on the calculation of the variance between both
oscillations. At this stage, more complex phase relationships are required and
the same trick cannot be implemented. Hence, for the calculation of the oscilla-
tion phase of each joint we implemented a DFT algorithm which calculated the
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Figure 6.28: Oscillations obtained for each type of joint when two joints are
coupled in second stage. From left to right oscillations for joint types J1, J2
and J3.

144



6.4. AIBO WALKING

Figure 6.29: Sequence of the oscillation obtained in simulation for the J1 joint
type during second stage. The robot is sat on its backside to allow for a free
movement of the joint. The evolution of the other joint types was performed
with the same setup and similar behaviours were observed, as indicated in figure
6.28.

main harmonic phase of the oscillation signal produced by each joint. The main
harmonic phase of each joint oscillation was used for both comparison and to
assess the oscillation relationship.

Hence, making use of that algorithm, the fitness function designed to obtain
coordination was composed of three parts: a part for each leg that expresses the
oscillation requirement; a part that expresses the maximal variance requirement
between the fore legs; and a final part that expresses the maximal variance re-
quirement between fore/rear differences. This has been specified in the following
fitness function:

fitness = fit cross ∗ fit oscil ∗ fit phases
�

�

�

�6.7

where fit cross is the product of the number of crossings for each joint per-
formed through their mean positional value, fit oscil is the variance of the left
fore joint which indicates how well that joint oscillates, assuming that if this
joint oscillates the others must follow, and fit phases is the part of the fitness
that indicates the phase relationship between all the joints. Similar to the fitness
function for the previous stage, these factors vary between 0.01 and 1.0 when
their corresponding variable oscillates between a good and a bad boundary (see
table 6.5). The genotype evolved is depicted in figure 6.30. The Aibo robot was
placed upside-down for the evolution of the coupling between the four joints in
order to allow for a free motion of the joints(figure 6.33).

Results

The evolutionary process was carried out seven times. Each evolutionary run
was composed of 400 simulation steps of 96 ms each. After 14 generations, 92%
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Figure 6.30: Genotype for the third stage of the Aibo walking.

Table 6.5: Variables and boundaries for the fitness function in the third stage.
Function Variable Bound [bad,good]
fit cross crossings product for joints [0.0 , 27000.0]
fit oscil fore left joint variance [-1.0 , 0.47]

fit phases joints phase relationship [0.0 , 1.0]
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Figure 6.31: Evolution of the fitness for the third stage, through generations.
Fitness is averaged over seven runs.

of the networks generated the typical oscillatory walking pattern 0º, 180º, 90º,
270º (for the leg sequence fore left, fore right, rear left, rear right).

Since each of Aibo’s legs is composed of three different types of joints, the
same process explained in sections 6.4.5.2 and 6.4.5.3 was performed for each
joint type, resulting in three different controllers of coupled joints oscillating
with the required phase relationship. At this point each controller for each type
of join (J1, J2, J3) was independent from the other controllers in terms of their
oscillation. The oscillatory patterns obtained for each type of joint can be seen
in figure 6.32.

6.4.5.5 Fourth stage: coupling between types of joints

The last stage is the coupling between the three groups of neural controllers
obtained. three different oscillating modular controllers were obtained from the
previous stage; one per joint type, with four joints of the same type oscillating
together in a walking phase relationship. What is now required is to connect the
three layers in order to obtain a coordination between the different joint types to
enable the robot to walk, and to complete the architecture as a whole. The next
step is the evolution of the connections between the three groups of controllers.
In terms of walking, connection between groups should produce coordination
between the different types of joints that have been evolved separately. The
vectors change now from three independent ones to a single one:

ytg = {yS−JkLF , yS−JkRF , yS−JkLR, yS−JkRR}
3
k=1
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Figure 6.32: Oscillations obtained for all types of joints in all legs.

Figure 6.33: Sequence of the oscillation obtained in simulation for the J1 joint
type during stage 3. The robot is lying on its back to allow for free movement of
the joints. The evolution of the other joint types was performed with the same
setup, and similar behaviours were observed, as indicated in figure 6.32.
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Figure 6.34: Genotype for the fourth stage of the Aibo walking.

utg = {uM−JkLF , uM−JkRF , uM−JkLR, uM−JkRR}
3
k=1

Connections between the three groups of controllers imply that 16 new in-
puts will be added to each IHU neural module. These inputs represent the
connection to the other 16 modules of the other two groups. Only these connec-
tions between groups are evolved to generate the required coordination between
the groups for the generation of stable walking. As a first approach, the co-
ordination between groups was attempted by evolving the connections using a
simple fitness function consisting of the distance walked by the robot. However,
the walking behaviour obtained by this approach, even if correct, was very sud-
den and induced instabilities that at times made the robot fall. Analysing the
behaviour obtained we observed that coordination between the groups was cor-
rectly achieved, but that some of the joints had lost their oscillation pattern due
to the new connections affecting the successfully evolved oscillatory controller.

For this reason, a new fitness function was proposed where the oscillation
of the joints was still imposed, together with the distance walked. If the robot
does not fall over the fitness function is composed of two multiplying factors:
the distance d walked by the robot in a straight line and the phase relationship
between the different joints. If the robot does fall over the fitness is zero.

fitness =

{

d ∗ fit phases when final height > 0
0 otherwise

where the phase relationship factor is a normalized product of the phase rela-
tionship for each of the layers, each of which is calculated as explained in section
6.4.5.3.

Results

A walking behaviour was obtained after 30 generations for around 87% of the
populations. The best walking sequence obtained is shown in figure 6.36.

Once this walking behaviour was obtained in the simulator, the resulting
ANN based controller was then transferred to the real robot using the Webots
simulator cross-compilation feature that we developed (see appendix A for a
complete description). This cross-compilation process takes the exact controller
developed in the simulator (the best of those evolved), and automatically trans-
lates it into Aibo’s OPEN-R code, which is then executed in the real robot. The
result was an Aibo robot that walks in the same manner as the simulated robot,
with a few minor differences. The walking sequence obtained is shown in figure
6.37.
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Figure 6.35: Fitness evolution of the fourth stage through generations; averaged
over seven evolutionary runs.

Figure 6.36: Simulated Aibo walking sequence.

Figure 6.37: Real Aibo walking sequence.
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6.4.6 Remarks on the results obtained

The implementation of each CPG was carried out using two neural nets: one in
charge of the sensor and one in charge of the actuator for every joint. Formally,
the implementation of a CPG does not require the use of sensor inputs, but
the introduction of the sensor networks could provide the system with a reflex
system that could be helpful in unpredicted circumstances [Ijspeert, 2002]. The
architecture introduced here integrates feedback from the sensor into the CPG;
its benefits have not yet been studied and will form part of our future research.
In particular, the reflex system of the DAIR architecture is integrated into the
CPG walking structure itself, not being a separate system, and could benefit the
walking style when dealing with uneven terrain or small obstacles, permitting
the robot to adapt to them and carry on walking.

The gait obtained could most probably be optimised in terms of speed, en-
ergy consumption, and aesthetics by fine-tuning the fitness functions, including
penalties for energy consumption and minimum inertia in the joints, amongst
other factors.

A few minor differences were detected in the transfer from the simulator
to the real robot. Whereas the simulator was able to generate a robot that
walked in a straight line, the real robot showed a slight tendency to turn to the
right due to the friction generated by the rear righthand leg. Several friction
parameters were tested on the simulator in order to find the best friction co-
efficients relationships, but the real robot ended on a round trajectory in each
case. This indicates that other factors are affecting the process of transference
from simulator to real robot. This is a subject to be studied in the future.

6.5 Discussion

The progressive design method allows for the evolution of controllers for complex
robots in complex tasks in complex robots. However, the process is not per-
formed in a completely automatic way as aimed for by the evolutionary robotics
approach. Instead, a gradual shaping of the controller is performed, with hu-
man training driving the learning process by presenting increasingly complex
learning tasks, and deciding the best combination of modules over time, until
the final complex goal is reached. This process of human shaping seems un-
avoidable if a complex robot body, sensors/actuators, environment and task are
imposed beforehand. This point has also been suggested by other researchers
[Urzelai et al., 1998, Muthuraman et al., 2003]. Progressive design, on the other
hand, differs from other approaches by implementing modularity at the device
level as well as the learning level, thereby allowing for better flexibility in terms
of the shaping. The main reason for this, is that due to the modularization at the
device level the designer can select at any evolutionary stage which small group
of sensors and actuators will participate under which task, and then evolve only
those modules. This would not be possible in a complex robot if modularization
at the behavioral level is applied.
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Progressive design can be seen as an implementation of the incremental
evolution technique but with better control of who is learning what at each stage
of the evolutionary process. If incremental evolution were used in a controller
with several inputs and outputs which control every aspect of the robot, it
may end up producing genetic linkage, and learning some behaviours in the
early stages would prevent the learning of other behaviours in the next steps as
the controller is so biased that it cannot modify itself to accommodate the new
behaviour whilst keeping the old one working. This effect is especially important
in complex robots where several motors need to be coordinated. Instead, the
use of progressive design allows for the evolution of only those parts required
for the task in a more flexible design.

In the case of the Khepera robot, when results obtained in the evolution of
the eleven modules in one single stage process are compared with those obtained
by three stages, it is observed that the progressive design of the controllers
obtained a slightly better mean fitness value than the mean fitness obtained in
the single stage case. Furthermore, the multiple-staged approach generated a
valid solution 100% of the time, with the one-stage process coming in at only
made 90% of the time. For that particular case, progressive design proved to
be more stable at finding good controllers than the single stage process. One
reason is that progressive design performs the evolution in small steps and in
reduced searching spaces, building new solutions in new stages beginning with
an already stable solution provided by the previous stage.

The negative side to this approach is that only a good enough solution can
be provided. Due to the fact that previously evolved modules are frozen from
evolving in the new stages, new stages have to implement the solutions found
in previous stages.

To sum up, it should be noted that it is not altogether clear whether the
progressive design method will be useful in more and increasingly complex robots
with hundreds of modules. Even though progressive design allows the evolution
of just a few modules in one stage, in the case of hundreds of modules the last
modules to be evolved will have hundreds of connections to evolve during that
stage, which will result in the search space being large again. Whether the
solution found at that moment will be able to lead the new stage towards a
point in the fitness landscape where a solution is near will have to be analyzed
in future work. In both the Khepera and the Aibo experiments, it was observed
that the solutions for one stage rapidly evolved from the solutions found in
previous stage, manifesting this good landscape starting point effect. It would
appear that the method will be valid for more complex agents, if a progressive
enough strategy is performed.

6.6 Conclusions

The progressive design method has been described for the generation of con-
trollers for complex tasks in complex robots. In this methodology, modularity
is created at the level of the robot device by creating an independent neural
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module around each of the robot’s sensors and actuators. This small concep-
tual modification from functional modularization is the reason of the reduction
of both the search space dimension and of the bootstrap problem by allowing for
the separate evolution of each device in stages. The architecture hence performs
modularization in the organization as well as in the learning.

This special type of staged evolution evolves the neural controller in stages,
using evaluation-tasks which are conditioned for the devices to be evolved. It has
been stressed that determining the evaluation-tasks and the set of modules to
evolve in each stage is the designer’s job, and that no general formula exists. In
general, the designer’s knowledge of the problem will play a relevant role, thereby
introducing bias into the evolutionary process, which appears unavoidable in
complex environments.

The results presented show how a distributed architecture is able to generate
a controller for the complex task of walking in a complex quadruped robot with
12 degrees of freedom by using evolutionary robotics. It was shown how the
direct evolution of that behaviour was not possible due to the size of the search
space for the evolutionary algorithm.
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Woman’s influence is powerful, es-

pecially when she wants some-

thing

Josh Billings, American Humorist 7
Adding external influence

This chapter describes how a progressively designed controller can slightly mod-
ify its behaviour based on the tonic value of a signal external to the controller.
This feature can be useful to tune, or even change, the current behaviour of
the controller once it has been completely evolved and installed on the robot.
This chapter describes how to integrate this feature into a DAIR controller. An
application to the Aibo robot is shown.

7.1 Description

In this chapter we will describe a method to generate a DAIR neural controller
for a complex robot, whose behaviour can be tuned based on a tonic value from
an external source. The signal modifying the behaviour will be referred to as the
TOC (from TOnic Control). The TOC signal is intended to originate from out-
side the DAIR controller, and could potentially stem from a user control panel
or any other external deliberative modules which may have been implemented
with other mechanisms different to DAIR. What is mandatory is that the TOC
signal must at every time step provide a value which represents a desired sta-
tus, from the outside module, and into the behaviour of the controller. The
procedure described here is based on a similar idea applied in [Ijspeert, 1998],
where the speed and direction of a swimming and running salamander is mod-
ified depending on the value of a tonic signal1. TOC signal values modified
the oscillation pattern of the salamander controller, enabling the salamander to
walk, turn and swim.

The main aim of developing such method was to allow for the interconnec-
tion between a DAIR controller, - which is basically reactive, and knowledge
insertion from a superior deliberative layer, which should control and modify
the DAIR controller behaviour according to its deliberations. The mechanism
implemented here is not intended to cause a complete change of the controller’s
behaviour: let’s say from following a wall to looking for food. Instead, the

1In fact, the work described in this chapter was performed while residing at the BIRG lab-
oratory at EPFL under supervision of its director, Professor Auke J. Ijspeert and Cyberbotics
CEO, Dr. Olivier Michel.

154



7.1. DESCRIPTION

Figure 7.1: Schematics of a final DAIR controller with TOC signal, for the
control of a robot with two sensors and two actuators.

objective is to slightly modify the currently evolved behaviour by providing an
additional adaptation step. The behaviour will be the same, albeit in a different
tone.

An example is an obstacle avoidance behaviour for a robot. For a robot
equipped with this behaviour a potentiometer could provide the TOC signal’s
value. This value could be used to indicate the distance from obstacles at which
to start avoiding them. Another more complex example is the one presented
in section 7.3, where the tonic signal is used to change the speed of the Aibo
robot’s walking pattern. In this case, the TOC value is used to indicate to the
IHU’s the frequency at which they must oscillate.

The addition of the TOC signal to a DAIR controller must be performed
during the generation of the DAIR controller. It is not possible to add such
control once the whole DAIR controller has already been created, because TOC
based control has to be embedded in the controller to be able to properly affect
the behaviour. TOC signals therefore need to be included in each of the stages
of the progressive design of the controller for progressively designed controllers.
Exceptions can be made with single staged simple controllers. In such cases the
DAIR controller can be evolved first, and the TOC signal added afterwards.

The use of a TOC signal to control a DAIR controller does not imply that
the same TOC value will be used for all of the DAIR controller’s modules at the
same time. It is indeed possible to use different TOC signals for different groups
of the controller’s modules, hence generating multiple behaviours from a single
controller. The method described here does not show any limitation about how
different TOCs are used for different modules. However, this research has been
limited to the case of all the modules sharing a common TOC.
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7.2 Procedure

The procedure begins with an already evolved controller at a certain stage.
Let’s imagine, for the sake of simplicity, that the desired controller only needs a
single stage, such as the case of the contour-following behaviour or the garbage
collector; the DAIR methodology was applied, and a distributed controller was
obtained which performs the desired behaviour in the robot. In this case, the
requirement is to modify the controller’s currently evolved behaviour, based on
the TOC signal’s value.

Basically, the method consists of, first, adding a new connection (the TOC
input) to the inputs of each module, and then measuring behavioural differences
in the controller when the value of the TOC signal changes. Finally, to evolve
the connections again, based on the difference in behaviour that best suits the
difference in TOC signal value.

During the evolutionary process the robot’s behaviour is measured, that
is, tested with different TOC values. Controllers accomplishing the behaviour
change desired by the designer will obtain better fitness values, and are hence
evolved forward. The result is a DAIR controller which changes its behaviour
according to the value of the TOC signal.

Differences in the behaviour will be measured by providing a behavior mea-
surement function, noted as behaviour measure. This function, defined by the
designer of the controller, provides a measure of the behaviour accomplishment,
based on the features the designer means of the TOC signal. For example, to
change speed based on the TOC signal value, a behaviour measure function may
measure the robot peak speed, an average over a period of time; another op-
tion may be to measure only its value when going straight. It depends on the
global task the robot has to solve, and is up to the designer to decide. Once
the behaviour measure function has been defined, differences will be provided
by comparing their respective values in different runs with the given controller,
where each run will test the same controller with different TOC values.

The procedure begins in the same way as in the progressive design method
described in chapter 6. Firstly, a staged evolutionary strategy is selected by
the designer. Hence the number of stages N required to evolve the controller is
decided, as well as the modules that will be evolved in each stage. At this point,
the first evolutionary stage is performed in the same way as described in chapter
6, using the provided f1 fitness function. Once the modules involved in stage-1
have been evolved and the stage finished, a new input t is added to all the IHU
modules evolved. That new input will be the input from the TOC signal. The
weight connecting this new input to the inner neurons of the neural network
of each IHU is randomly initialised. The evolutionary process from stage 1 is
then resumed, but using a modified fitness function f ′

1 which adds an additional
term to the original fitness function, indicating how the controller’s behavior
has to change based on the TOC value. The new fitness function will now be
something different, including the f1 term, and an additional term based on the
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behaviour measure1 value,

fitness = f ′
1 · g (behaviour measure1)

During the evolutionary process with f ′
1, the evaluation of a given controller

is performed several times, with different TOC values:

1. In the first evaluation, the TOC signal value is set to 0 for all the evaluation
steps. Once the evaluation for that controller is finished, f1 fitness is
calculated as well as the behaviour measure1 for that evaluation. They
will be called f11 and behaviour measure11. The first sub-index indicates
the current stage being evolved. The second index represents the current
evaluation.

2. The same controller is then evaluated again, but increasing the tonic signal
value by a certain ∆TOC amount. The amount to increase depends on
the application, and must be decided by the designer.

3. The new value of the TOC signal will affect the controller’s behaviour, and
so a new and different f12 fitness value, as well as a behaviour measure12

must therefore be calculated again after the evaluation.

4. If the robot’s behaviour is still acceptable, that is,

f12 ≥ θ

behaviour measure12 > behaviour measure1

the TOC value is incremented again by ∆TOC and a new evaluation is
performed. A fitness value below a given θ threshold means that the be-
haviour produced by the controller has downgraded too much due to the
influence of the TOC value. At this point, our consideration is that the
robot does not perform the required behaviour anymore, and the con-
troller’s evaluation is finished. The value for θ is determined by the de-
signer.

5. The evaluation process will be repeated n times until either the f1n fitness
value decreases to below a certain value, or the behaviour measure1n ≤
behaviour measure1(n−1).

6. Finally, the last fitness for the controller is calculated based on all the
fitness f1i with 0 < i < n and the number of times that the TOC signal
successfully produced a good behaviour, that is n − 1. It is up to the
designer how to integrate this information into a single f ′

1 fitness function,
but it can be performed by multiplying the last successful fitness function
by the (normalized) number of times that the TOC signal was changed,

f ′
1 = f1(n−1) ·

n − 1

maxNumChanges
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where maxNumChanges is the maximum number of changes that the
TOC signal can theoretically perform. If the TOC value changes from 0
to 1, this value is,

maxNumChanges =
1

∆TOC

7. The f ′
1 fitness is the total fitness assigned to the controller. The general

evolutionary process is repeated until a suitable controller for the first
stage is obtained.

8. When the first stage of the controller is ended, the second one is started,
where new modules are added to the controller. For this second stage, the
TOC value of both new and first stage modules is set to zero.

9. Newly added modules are then evolved as explained in chapter 6, using
a f2 fitness function. When the level of proficiency reaches the desired
value the evolution of the controller with TOC influence is started. A new
behaviour measure2 is determined.

10. The TOC evaluation steps described above are now repeated for this new
stage, where the TOC values do not affect the whole controller, but only
the newly added modules, taking f ′

2 as evaluation criteria.

11. The whole process is repeated for all the designed evolutionary stages, by
defining at each stage functions f ′

i fn, and behavior measurei. The final
result is the complete DAIR controller whose behaviour changes depending
on the TOC value.

An example of the application of this process is shown in the next section where
an Aibo robot evolves a different velocity in its walking behaviour.

7.3 Example: influencing the Aibo walking

This section shows in one complex example how to influence a DAIR controller
through a TOC signal. The controller is the one developed in section 6.4,
and performs a walking behavior in the Aibo robot. For this example, it is
requested that the robot be required to change its walking speed based on a
TOC value, which basically implies the modification of the frequency at which
joints oscillate. The velocity change should of course be synchronised between
all the modules.

The generation of the TOC version of the controller will require the repetition
of all the stages developed in the 6.4 section, following the method described
in section 7.2. Hence, the controller is generated in the four different stages
which follow. The evolutionary process is the same as the one described in the
6.4 section, and uses the same parameters. The following sections only describe
the additional process required to evolve the walking behaviour at a different
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speed. Please refer to section 6.4 for additional information on any parameter
or method.

In order to simplify the generation of the controller and speed up the pro-
cess, different evolutionary stages will not be performed for each type of joint.
Instead, at every stage, only the controllers related to the J1 joint type will be
evolved and then copied to the other types of joints. Hence, stage 4, coupling
between different types of joints, will evolve the couplings between joint types
adapting the copied controllers to their specific joint types. It was found that
this process was good enough to produce the expected results, even if a bet-
ter suited controller might have been possible if an independent controller were
created for each joint.

7.3.1 First stage: single joint oscillation at several speeds

As described in section 6.4.5.2, the DAIR controller is only composed of two
modules at this stage: one for the joint sensor and another for the joint motor.
The fitness function to obtain an oscillation was the 6.5 equation, composed of
two parts: joint variance and number of oscillations. Only the part measuring
the variance, equation 6.4, will be used now, and the part measuring the number
of oscillations will vary depending on the TOC signal value. It was empirically
observed that a minimum value of 0.5 should be obtained to assert that the
joint is oscillating, θ1 = 0.5f1k > 0.5.

The behaviour measure1k function for stage-1, k-th evaluation, was defined
measuring the number of crossings through the mean oscillation position of the
joint. Finally, the final fitness function was defined as follows,

fitness1 = f1(n−1) · behaviour measure1(n−1) ·
n − 1

maxNumChanges

where n− 1 is the last successful evaluation of the controller. By default, TOC
signal values will remain between 0 and 5 throughout all the stages. The increase
in TOC signal for each evaluation will be of ∆TOC = 0.1, so

maxNumChanges =
5

△TOC
= 50

Based on the described setup, a large range of variable speeds was obtained
for joint J1. Table 7.1 shows the number of generations used and the maximum
fitness obtained, and summarizes the oscillation ranges obtained for each type of
joint. The range is quite large and linear, where small changes of the TOC signal
produce small changes in the speed (frequency). This linearity is not mandatory,
and indeed can have strange non-linear factors for other applications, as was
indicated in [Ijspeert, 1998]. Figure 7.2 shows how the oscillation frequency
changes when the tonic value increases2. Due to the maximum velocity of the
joints, a reduction of the oscillation amplitude is observed as the frequency of
oscillation increases.

2Videos showing the robot behaviour in the simulator are available at
www.ouroboros.org/thesis
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Table 7.1: Table of oscillation speed ranges obtained for the J1 joint type when
evolving a single joint.

Joint TOC range Freq. range (Hz) N. gen. Max. fitness
J1 0.0 - 1.4 (15 values) 0.2 - 0.7 40 0.75

Figure 7.2: In this figure, the controller obtained for one single joint is tested
(on joint J1-LF). The oscillatory pattern obtained shows how the oscillation
frequency increases along the TOC value. The change in frequency value is
very smooth.
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Table 7.2: Table of oscillation speed ranges obtained for the J1 joint type when
evolving two joints in counter phase.

Joint TOC range Freq. range (Hz) N. gen. Max. fitness
J1 0.0 - 0.7 (8 values) 0.31 - 0.7 40 0.85

7.3.2 Second stage: two joints oscillating at several speeds

The goal for this stage is to obtain two joints oscillating in counter phase.
Oscillation frequency changes in both joints must be similar to maintain phase
between them. The controller is now composed of four IHU modules. The same
trick described in section 6.4.5.3 is used to simplify the evolutionary process.
That is, the controller developed in the previous stage is duplicated in this stage
to control the two joints, and only the connections between the two are evolved.
For the fitness function which decides whether the behaviour is or is not a
counter oscillatory one, the fit var term in equation 6.6 is used, f2k = fit var.
Again, it is empirically observed that a minimum value of 0.5 has to be obtained
in order to assert that the joint is oscillating.

The behaviour measure2k function is defined as the number of crossings
through the mean position value of the joint, and it is calculated independently
for each joint, A and B,

behaviour measure2k =
{

fit crossA
k , f it crossB

k

}

Finally, the final fitness function for the controller will be calculated as follows,

fitness2 = fit crossA
n−1 · fit crossB

n−1 · fit varn−1 ·
n − 1

maxNumChanges

Table 7.2 shows the number of generations used and the maximum fitness
obtained, and summarizes the oscillation ranges obtained for each type of joint.
Figure 7.3 shows how the oscillation frequency changes when the tonic value
increases. A small reduction in the frequency range that the controller is able
to oscillate in whilst remaining in a coordinated oscillation is observed from the
previous stage to this one.

7.3.3 Third stage: four joints oscillating at several speeds

This stage coordinates oscillation between four joints of the same type, and syn-
chronizes them when changing speed. As in the previous section, the controller
obtained in the previous stage is duplicated to control from two to four joints,
and only the connections between the modules are evolved. For the fitness func-
tion determining whether the behaviour is or is not a counter oscillatory one,
the two last terms in the 6.7 equation are used, (fit oscil) measuring how good
the oscillation of one of the legs is (the left fore), and (fit phases) evaluating
how good the phase differences are between this leg and the others for a walking
pattern,

f3k = fit oscilLF
k · fit phasesk
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Figure 7.3: Oscillation patterns obtained for each type of joint, when two joints
are evolved.

where

fit phasesk = fit phasesLF-LR
k · fit phasesLF-RF

k · fit phasesLR-RR
k

The threshold values actually observed in order to obtain a real oscillation are
as follows:

fit oscilsLF
k > 0.7

fit phasesLF-LR
k > 0.49

fit phasesLF-RF
k > 0.49

fit phasesLR-RR
k > 0.49

It is observed that the threshold for fit oscilLF
k increased from previous stages

value (0.5) to a higher value (0.7). This is due to the fact that a higher qual-
ity oscillation for the left fore leg is required because all the other legs will
synchronize their oscillation to that leg.

The behaviour measure3k is defined by the number of crossings each joint
performs. Hence, it is composed of four terms: one for measuring the crossings
of each joint,

behaviour measure3k =
{

fit crossLF
k , f it crossLR

k , f it crossRF
k , f it crossRR

k

}

Evaluations with an increased TOC signal value are performed as long as all

four fit cross
(·)
k values increase from the previous evaluation to the current one.

Finally, the overall fitness assigned to a controller is calculated as follows,

fitness3 = fit crossLF
n−1 · fit crossLR

n−1 · fit crossRF
n−1 · fit crossRR

n−1·

fit oscilLF
n-1 · fit phasesn ·

n − 1

maxNumChanges
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Table 7.3: Table of oscillation speed ranges obtained for the J1 joint type, when
evolving four joints in walking style phase.

Joint TOC range Freq. range (Hz) N. gen. Max. fitness
J1 0.0 - 0.7 (8 values) 0.46 - 0.7 40 0.54

Figure 7.4: Oscillation patterns obtained for each joint type, when four joints
are evolved.

Table 7.3 shows the number of generations used and the maximum fitness
obtained, and summarizes the oscillation ranges obtained for each joint type.
Figure 7.4 shows how the oscillation frequency changes when the tonic value
increases.

7.3.4 Fourth stage: coupling the three layers

From the previous stage, a layer of J1 joints of the same type which oscillate
with a walking gait phase relationship between joints is available, and whose
oscillation speed can be changed. This stage replicates the obtained layer to the
other two: J2 and J3, and coordinates the oscillation between the three different
layers by evolving the connections between them. The three layers must be able
to change speed based on the TOC value.

For the fitness function determining the counter oscillatory behaviour, two
terms are used again: fit oscil scoring the oscillation of the left fore joint of
each layer, and fit phases for the phase differences of this leg and the others
for a walking pattern, for each of the three layers,

f4k = fit oscilk · fit phasesk
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Table 7.4: Table of oscillation speed ranges obtained when evolving four joints
in walking style phase.

TOC range Freq. range (Hz) Num. gen. Max. fitness
0.0-0.1 (2 values) 0.5 - 0.503 175 0.12

where

fit oscilk = fit oscilJ1-LF
k · fit oscilJ2-LF

k · fit oscilJ3-LF
k

fit phasesk = fit phasesJ1
k · fit phasesJ2

k · fit phasesJ3
n

fit phasesJx
k = fit phasesJx-LF-LR

k · fit phasesJx-LF-RF
k · fit phasesJx-LR-RR

k

and the threshold values actually observed are as follows,

fit oscilsJx-LF
k > 0.7

fit phasesJx-LF-LR
k > 0.49

fit phasesJx-LF-RF
k > 0.49

fit phasesJx-LR-RR
k > 0.49

where Jx stands for J1, J2 and J3 values.
The behaviour measure3k is defined by the number of crossings each joint

performs. Hence, it is composed of four terms, one for measuring the crossings
of each joint,

behaviour measure3k =
{

fit cross
Jx-{LF,LR,RF,RR}
k

}

Finally, the overall fitness assigned to a controller is calculated as follows:

fitness3 = fit crossLF
n−1 · fit crossLR

n−1 · fit crossRF
n−1 · fit crossRR

n−1·

fit osciln−1 · fit phasesn ·
n − 1

maxNumChanges

where

fit crossn−1 = fit crossJ1
n−1 · fit crossJ2

n−1 · fit crossJ3
n−1

fit crossJx
n−1 = fit crossJx-LF

n−1 · fit crossJx-LR
n−1 · fit crossJx-RF

n−1 · fit crossJx-RR
n−1

Table 7.4 shows the number of generations used and the maximum fitness
obtained, and summarizes the oscillation ranges obtained. In the same way
as in the case of two joints, it is observed a huge reduction is observed in the
frequency range that the controller is able to oscillate in while maintaining a
coordinated oscillation.

7.3.5 Discussion

The results obtained show how the different joints of the same type can vary
their speed based on the TOC signal value. The change in speed of the whole
Aibo robot is not very significant though. There could be several reasons for
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this, but the most likely is that too many new connections to be evolved are
involved in the last stage. On the other hand, the proposed staged evolution is
only one of many possibilities using the DAIR. Fitness functions can be improved
in several ways, leading to other sub-optimal (and probably successful) results.
For instance, one example is that the fourth stage could be divided into two
stages, one where modules for joints J1 and J2 are connected using a fitness
function based on oscillation patterns, and a second one where the J3 layer of
controllers is added, and the fitness function is only related to walking distance.
In any case, this is just an example and other ways of evolving it may be found.

Once the complete walking controller with velocity change is obtained, the
robot can be controlled with different TOC values for different parts of the
controller. This means that a certain TOC value can be applied to the modules
of the left-hand side of the robot, and a different TOC value applied to the
modules of the right-hand side. This may lead to a turning behaviour with one
single controller, in a similar way as applied in [Ijspeert, 1998].

As a summary of this section, we must point out that even if the final result
was not totally successful (just two TOC values are allowed to change Aibo’s
speed), the section demonstrates an application of how an external signal can
affect a DAIR controller. The main drawback of the method is that it requires
considerably more time and external knowledge to be introduced.

7.4 Conclusions

This section has demonstrated how to include an external signal inside a DAIR
controller which allows the modification of the evolved controller’s behaviour.
It only shows proof of the method’s concept when applied to a complex robot.
Hence, several issues remain open for further study: such as the reason why
the TOC range decreased from one stage to another, whether the change in
behaviour is lineal with the change in TOC values, or whether a better strategy
would have lead to a larger range of speeds in the robot. The use of such a
procedure to modify the walking trajectory of the robot by applying different
TOC values to different modules at the same time is left for the future.
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The meaning of a experience is in-

tegrated in the experience itself. Is

part of it, is embedded into it, and

has no meaning outside that con-

crete experience

Oscar Vilarroya (The dissolution
of mind) 8

DAIR inner analysis

In previous chapters it was shown how a society of distributed IHU’s was able
to control different types of robots while performing some behaviour.

This chapter analyzes how IHU’s deal with information when they are work-
ing on the generation of a behaviour for a robot. What the role of each IHU
is in the final robot behaviour will be analyzed, as well as how the IHU’s or-
ganize and collaborate between each other in order to generate the final global
behaviour. By analyzing the distributed ensemble of IHU’s it is observed that
modules create their own communication values for the cooperation between
themselves. Furthermore, it is observed that IHU’s always communicate the
same value to their peers when the situation that the robot is experiencing is
similar, even if the actual sensor values are different. This observation leads
to a discussion about how IHU’s manage information so that the output of the
IHU’s is taken as a meaningful internal representation of the current situation
of the robot. This internal representation has emerged through interaction of
the robot with the environment, or, otherwise stated, the robot acquires its own
semantics. Hence, what this section basically explains is the addition of the
term Internal Representation in the name of the (DAIR) architecture.

The chapter begins introducing some notation about the observable vector
that allows us to infer the internal representation of the robot. Next, this vector
is used to analyze the behaviour in the contour-following experiment, and to
provide an automatic way for the user to extract understandable knowledge
from the internal representation. Additional results are presented analyzing
the garbage collector behaviour, as well as a discussion of the Aibo behaviours
obtained in previous chapters.

8.1 Introduction

In previous chapters, the DAIR architecture was shown generating the required
behaviours for robot control in various different tasks. In order to achieve this,
a cooperation/coordination between all the IHU’s was obtained through an evo-
lutionary process. This coordination lead to a given robot behaviour, with each
IHU having a particular view of the robot’s current situation. It is important to
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show how this cooperation works, and what the final result of this cooperation
consisted of.

It will be observed that the IHU elements generate a cooperative behaviour
between each other. They communicate their status to the other IHU’s through
their output, in the robot’s different situations. This kind of communication
mechanism leads to an internal representation of the robot situation, where the
status of all the IHU’s are taken into account in any given situation. The inter-
nal representation can be observed as a semantic representation of the robot’s
current situation, with the robot associating meaning to its experiences. The
generation of this meaningful situation permits the robot to categorize its situ-
ation by means of a state vector which is easily accessible from the outside even
if neural networks have been used.

8.2 Definitions

Some terms will be defined before going further in the analysis of the IHU
behaviour. It is important to notice that the terms defined here only apply for
completely evolved controllers. They are not used for controllers that are still
in the process of evolution.

For the analysis of the IHU’s it will be observed how the outputs of the
IHU modules change in different situations experienced by the robot while it
is performing a task that it has been evolved for. For this purpose, the state
vector is defined as the vector that contains the output values of all the robot’s
IHU’s at any given time. That is, for a robot controller composed of N sensors
and M actuators, the state vector is defined as,

state vector(t) = (OS1(t), OS2(t), . . . , OSN (t), OA1(t), OA2(t), . . . , OAM (t))

The vector can be plot over a period of time and observe how it changes
in the different situations the robot is experiencing. For instance, figure 8.1
shows the plotting of the state vector for a Khepera II robot while controlled
by 4 IHU’s performing a contour-following behaviour. Each coloured line shows
the current value of a IHU’s output. The state vector will help to investigate
whether any correlation exists between the current state of the IHU’s and the
situation that the robot is experiencing.

Now, the internal state of the robot is defined as the value of the state vector
at a given time. Thus the internal state of the robot is codified as a vector of n

dimensions, where n = M + N is the number of IHU’s. The interesting point is
to observe how the internal state changes while the robot performs its evolved
task, and identify any correlation between its behaviour and the current internal
state. In fact, as we will see below, the internal state coherently changes as the
robot situation changes. This will lead us to show that the internal state actually
represents how the robot perceives the current situation that it is experiencing.

The internal state actually remains relatively stable around a set of values
when the robot is involved in similar situations. The model vector is defined
as the set of values of the state vector related to one given internal situation,
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and hence represents the given situation experienced by the robot. As it will be
shown analyzing the state vector in two examples, the DAIR architecture will
identify all the different situations where the robot is involved while running its
behavior. The identification of such situations will be expressed by maintaining
a given value of the state vector. This value will remain stable for similar
situations, and will indicate the internal state of the robot. This is the model
vector. Robot situations are associated to the robot experience and they can
correspond to recognizable human meanings, though this is not mandatory.

8.3 Contour-following behaviour state vector analy-

sis

The IHU’s knowledge management will be analyzed within a successfully evolved
DAIR controller through the contour-following behaviour example. The state
vector of the controller created in chapter 4 for the generation of the orbiting
behaviour on a Khepera II robot will be studied. In this case, the state vector
is composed of only four components, corresponding to the output of the two
sensors and two actuators,

state vector(t) = (OSx(t), OSy(t), OMr(t), OMl(t))

where OS(·)(t) is the output from the IHU associated to the sensor S(·) (IHU-
S(·)) delivered to the other IHU’s, and OM(·)(t) is the IHU’s output of the M(·)

(IHU-M(·)) motor. The group of neural modules used to control the robot in
this test was the one that obtained the best performance in the ten evolutionary
tests performed in chapter 4.

8.3.1 State vector of the contour-following behaviour

The state vector trajectory for this robot during a typical operation is shown
in figure 8.1. The robot starts in a free space with it’s sensors not detecting
anything and it initiates a circular movement, indicated by the activation of the
IHU-Ml and IHU-Mr at different power levels. The execution of this mechanism
ensures that the robot will encounter an obstacle at some point on its circular
trajectory; either the central object or the wall. The radius of the performed
circle depends on the conditions in which the robot was evolved, basically the
distance-to-obstacle at the beginning of the evolution.

Once the robot encounters the obstacle with sensor Sy, the state vector
changes for the motor IHU’s, producing an opposite rotation direction. Also,
the part of the sensor of the state vector changes to indicate that the robot
is experiencing a different situation. The rotating behaviour in the opposite
direction is activated, until the Sy sensor detects nothing and sensor Sx reaches
a certain level1. At this point, the robot is, more or less, aligned with the object.

1Sensor values shown on the plots of this chapter increase their value when the distance
detected decreases. This is how the simulator works.
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Figure 8.1: This plot shows a typical run of the contour-following behaviour.
Left: Sequence of robot movements. Right-top: state vector plot. Right-
bottom: distances detected by sensors during the run.

Again, the state of the vector changes by applying a similar velocity to both
motors so that the robot moves along the object. After a while, in step 83,
the robot loses contact with the object because it has reached a corner. The
IHU’s quickly change their state to activate again the counterclockwise rotation
procedure. Once the robot detects the object again with sensor Sx, the move
along object state is again activated.

8.3.2 Identified model vectors (states)

By visual inspection of the robot changing behaviour, four different states are
identified: the robot detects nothing; the robot detects something with sensor
Sx; the robot detects something with sensor Sy; and the robot detects something
with both sensors. We will inspect below the state vector looking for any model
vector uniquely associated to those states, and hence, associate those model
vectors to the current situation (state) of the robot.

In order to find model vectors associated to the robot state, to ascertain
how stable they are, and which their value ranges could be, the state vector
is measured on each of the particular situations described above following this
experimentation: one of the four described situations is artificially presented to
the robot and its vector state evolution towards a stable state is observed. In
that artificial situation, the robot is not allowed to change its status by acting
upon the motors, because this would change the situation that the robot expe-
riences. So, the output generated by the IHU’s of the motors is not effectively

169



8.3. CONTOUR-FOLLOWING BEHAVIOUR STATE VECTOR ANALYSIS

Figure 8.2: Left: sequence of movements of the contour-following robot when it
does not detect anything and moves in counterclockwise circles. Right: vector
state in that situation.

sent to the motors for acting upon them, but the signal is sent to the other
IHU’s. Once the state vector has stabilized, the conditions of that particular
state are manually modified so slightly that no change in the state is observed.
Distances detected by the sensors are slightly varied by manually moving the
robot to a convenient distance. As long as the state vector remains stable, it
will be concluded that the current range of values of the state vector form a
model vector which defines the situation as experienced by the robot.

The four different situations, corresponding to the states observed, are pre-
sented:

State-a Robot in a free space. The robot detects nothing with its sensors. In
this case, the robot is placed in the environment where nothing is detected
and it is allowed to move around freely while not approaching any object.
The state vector evolution obtained is the one depicted in figure 8.2. After
a short transient, the state vector becomes stable with a value,

state vector(t) = (0.9, 0.12, 0.49, 0.96)

This stabilized value is identified as the model vector for State-a. It will
be said that the meaning of that model vector is robot in a free space.

State-b The robot detecting an object with the Sy sensor. In this situation, the
robot detects something in front of it only with the Sy sensor. To observe
how the status is activated and at which distance, the robot is situated in
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Figure 8.3: Left: sequence of images of the contour-following experiment when
the robot approaches the central object from the free space, and detects it with
the Sy sensor. Right: vector state transition from State-a to State-b.

a free space and both wheels are blocked from moving towards the central
object. The transistion from the State-a to the State-b is clearly observed
in figure 8.3: the state is activated after the value of the IHU output
associated to the sensor is above a certain threshold, and the state vector
remains stable for all the different values of the distance detected by the
sensor. This is an important result since it supports the claim that the
state vector really is indicating the robot’s real state from a conceptual
point of view. As a consequence, the controller drives a change in the IHU
outputs of the motors. In the figure 8.3, the robot does not actually rotate
because the wheels are blocked during the experiment. Hence, the model
vector for this state is identified as,

state vector(t) = (0.0, 0.99, 0.99, 0.0)

For the model vector for State-b, the meaning is object in front of robot.

State-c Robot detecting an object with both sensors. In this situation, the
robot detects something in front of it with both, Sx and Sy sensors. To
test this state, the robot is placed in a free space at an inclination of 45º

towards the central object and the wheels blocked from moving the robot
towards the object. The transition from State-a to State-c can be observed
in figure 8.4. Again, this state is activated when the values are above a
certain threshold. It can be assumed that the concept in this case is that
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Figure 8.4: Left: sequence of images of the contour-following robot when it does
approach the central object from free space, and detects it with both Sx and Sy

sensors. Right: vector state in that situation.

there is an obstacle in front of the robot. The model vector for this state
is identified as,

state vector(t) = (0.0, 0.99, 0.99, 0.0)

By observing the model vector for State-c, it can be verified that it is
exactly the same as for the previous State-b. This means that the robot
is identifying something along the lines of the same situation, whether the
Sx sensor is activated or not. Hence, State-b and State-c both represent
the same concept from the controller point of view, related to the task
it has to solve, and they require the same actuation, that is, to change
rotation direction to clockwise. So, the State-c is discarded as a new state.

State-d Robot moving along the contour of the object. In this case, only the Sx

sensor detects something. By placing the robot in close proximity to the
object and leaving it free to act with the learned controller, a behaviour
and associated state vector as shown in figure 8.5 are obtained. In this
case, the robot changes its situation from having the object in front of
it to having the object on its left-hand side. The state vector plotted in
figure 8.5 shows a non-constant value for the different IHU outputs, apart
from IHU-Sy. Values oscillate into a given range resulting in an oscillating
behaviour2. This oscillation when the robot is moving along the object at

2See the video at www.ouroboros.org/thesis
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Figure 8.5: Left: sequence of images of the contour-following robot when it
changes from detecting the object with Sy sensor, to detecting the central object
with the Sx sensor. Right: vector state for that situation.

a CLOSE distance is motivated by the non-constant command controlling
the motors, hence sometimes IHU-Ml > IHU-Mr, or inversely. Even if the
values move around an average they do not remain stable. The model
vector for this state can be described as follows,

state vector(t) ∈ [(0.228, 0.1, 0.672, 0.617) , (0.51, 0.1, 0.88, 0.839)]

or, alternatively,

state vector(t) = (0.369, 0.1, 0.736, 0.728)± (0.141, 0, 0.064, 0.111)

The situation depicted in figure 8.5 presents a reduced set of situations,
where the couple of situations that the robot faces are limited and do not allow
for the observation of how the state of sensor Sx influences in the vector state, or
whether its value determines one state or another. To shed light on this subject,
we again test the robot moving along the central object at different distances
from it. Figure 8.6 shows how the state vector changes for such situations.

During normal operation (figures 8.1 and 8.5) the state vector uses a model
vector for moving along the object like the one described by State-d. However,
figure 8.6 indicates that State-d is in fact not as stable as observed in figure 8.1
during normal operation. Hence, from figure 8.5, State-d can be divided into
three different situations: the robot drifts to the left (when IHU-Ml < IHU-
Mr), the robot moves more or less straight forward (when IHU-Ml = IHU-Mr),
or the robot drifts to the right (when IHU-Ml > IHU-Mr). These situations
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Figure 8.6: Left: sequence of images of the contour-following robot at different
distances from the central object. In this situation, only the Sx sensor detects
something. Right: vector state for those situations. The state vector contains
the measurements at 21 different distances, even though the figure on the left
only shows the measurement for four of them.
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Table 8.1: Manually extracted model vectors for the contour-following be-
haviour.

State IHU Sx IHU Sy IHU Ml IHU Mr

a 0.9 0.12 0.49 0.96
b 0.0 0.99 0.99 0.0
d1 0.775 ± .135 0.1 0.55 ± .06 0.925± .035
d2 0.44 ± .20 0.1 0.695 ± .085 0.765± .125
d3 0.135 ± .105 0.1 0.825 ± .035 0.56 ± .08

are identified as new states that the robot is experiencing, which will be called
State-d1, State-d2, and State-d3 respectively. From the data plotted in figure
8.6, states are identified according to the data in table 8.1. In fact, the model
vector for d2 corresponds to the original situation of State-d.

8.3.3 Automatic extraction of model vectors

Up until this point, identification of the model vectors has been manually per-
formed. Even if it worked correctly for that simple contour-following exam-
ple, manual analysis could not be possible for more complex robots and en-
vironments, due to the high dimensionality of the state vector, and the dif-
ferent states that may arise. For this reason, it would be more convenient to
generate an automatic procedure that, given a stream of state vector values,
determines how many different model vectors exist and under which circum-
stances. For this purpose, the use of a vector quantizer algorithm called ARAVQ
[Linaker and Niklasson, 2000, Bergfeldt and Lin̊aker, 2002] is proposed.

The ARAVQ algorithm works on the IHU’s flow of data by identifying dif-
ferent situations coded in. It acts as a moving average along the data flow,
capturing model vectors that represent high order concepts, clustering state
vectors in the same concept, that is, in the same model vector. This algorithm
does not require the number of model vectors to be specified beforehand, but
rather generates them automatically.

The algorithm works as follows [Linaker and Niklasson, 2000]: it receives
the IHU’s current outputs as input at every time step. A finite moving average
x̄(t) is calculated over the last n input signals provided to the algorithm,

x̄(t) =
1

n

n−1
∑

i=0

x(t − i)

At each time step, the moving average is compared with all the model vector
already created, using a mismatch measure. If it does match with any of the
vectors, then no action is taken, and it is assumed that the current input signal
corresponds to the matching model vector. Otherwise, the current average is
promoted for the generation of a new model vector, meaning that the robot is
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experiencing a new situation. The mismatch measure is calculated as,

d(V, X) =
1

| X |

|X|
∑

i=1

min1≤j≤|V |{‖ xi − vj ‖} ; xi ∈ X,vj ∈ V

where V and X are sets of vectors, and ‖ . ‖ denotes the Euclidean distance.
The promoted average will be a new model vector if two criteria are fulfilled:

first, the dM(t) mismatch between each of the last n inputs and all the {M(t)}
model vectors must be greater than a certain δ threshold,

dM(t) = d ({M(t)}, {x(t), . . . ,x(t − n + 1)}) ≥ δ

second, the current moving average must be stable, that means, the dx̄(t) dif-
ference between the x̄(t) moving average and the last n input signals has to be
below a certain stability criteria ε.

dx̄(t) = d (x̄(t), {x(t), . . . ,x(t − n + 1)}) ≤ ε

Basically, ε is the quantity of noise allowed, in terms of distance between
the current average and the models, or variability between models, and δ is the
minimum distance allowed between different models. If both criteria’s are met,
the current average signal x̄(t) is used as a new model vector and incorporated
into the current set of model vectors. Additionally, the ARAVQ algorithm
incorporates a way to fine-tune the models created. It may occur that the
current model vector used for a given concept is not the best representation
of that concept. Then, the algorithm uses a α learning rate parameter which
indicates how a model vector could be modified by new, better instances of it.

This algorithm mainly requires four parameters to be set up: ε, δ, the buffer
size n, and α. Their values depend on how large a difference between model
vectors is allowed. For the case of the contour-following behaviour, the following
parameters were selected:

• For the δ parameter, the minimum for Euclidean distances between all
the vector models obtained by hand (see table 8.1) was calculated, and a
slightly lower value was used,

δ = min{‖ xSa − xSb ‖, . . . , ‖ xSd2 − xSd3 ‖}
= min{1.705, .142, .54, .926, 1.562, 1.287, 1.072, .398, .786, .1519}
= .142

• For the ε parameter, the averaged maximum change of the IHU output
values for a given state, averaged over all the states, was calculated,

ε =
1

S

S
∑

i=1

1

M + N

S
∑

j=1

IHUmax
ij − IHUmin

ij

2

where S is the total number of states identified, M +N is the total number
of IHU’s used, and IHUmax

ij and IHUmin
ij are the maximum and minimum
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Table 8.2: ARAVQ parameters used for the extraction of model vectors in the
contour-following behaviour.

Alpha Delta Epsilon Buffer size
0.03 0.14 0.04 12

Table 8.3: Table of model vectors identified by the ARAVQ algorithm when ap-
plied to the state vector of figure 8.2. Association with states has been manually
performed.

ARAVQ model IHU Sx IHU Sy IHU Ml IHU Mr Manual model
1 0.91 0.12 0.49 0.96 a

output provided by IHU-j when in i-th state. So, from values of the
manual analysis,

ε =
(IHUmax

Sx−d1 − IHUmin
Sx−d1) + · · · + (IHUmax

Mr−d3 − IHUmin
Mr−d3)

5 · 4 · 2
= .065

• For the buffer size n, it is observed that the state vector stabilizes after
transitions lasting no longer than 3 time steps. So a value above that
number will be enough to not try to generate model vectors from the
transitions. n = 12 is selected as the buffer size.

• For the α learning rate a typical value is 0.03.

Hence, the final parameters used in the ARAVQ algorithm are displayed in table
8.2. The application of the algorithm to the different vector states of figures
from 8.2 to 8.6, produces the state vectors in tables 8.3 to 8.7.

After applying the ARAVQ algorithm to the IHU’s data flow displayed in
figure 8.1, three different model vectors were obtained. The model vectors dis-
covered by the algorithm are very similar to the ones manually calculated. The
ARAVQ algorithm was able to discover the model vectors, but does not include
any information about to which (meaningful) state they actually correspond.
However, for this case, it is very easy to manually create the correspondence,
by observing either the figures used for the manual identification of the models
(figures from 8.2 to 8.6), or by comparing with the manual models summarized
in table 8.1.

Table 8.4: Table of model vectors identified by the ARAVQ algorithm when ap-
plied to the state vector of figure 8.3. Association with states has been manually
performed.
ARAVQ model IHU Sx IHU Sy IHU Ml IHU Mr Manual model

1 0.91 0.115 0.48 0.96 a
2 0.0 0.989 0.99 0.0 b
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Table 8.5: Table of model vectors identified by the ARAVQ algorithm when ap-
plied to the state vector of figure 8.4. Association with states has been manually
performed.
ARAVQ model IHU Sx IHU Sy IHU Ml IHU Mr Manual model

1 0.91 0.115 0.48 0.96 a
2 0.0 0.961 0.99 0.0 b

Table 8.6: Table of model vectors identified by the ARAVQ algorithm when ap-
plied to the state vector of figure 8.5. Association with states has been manually
performed.
ARAVQ model IHU Sx IHU Sy IHU Ml IHU Mr Manual model

1 0.37 0.1203 0.74 0.74 d

8.3.4 Discussion

In the previous example, four different model vectors were identified for the
robot behaviour by using the state vector. A task-related meaning has been
manually assigned to those model vectors, because it was possible to visually
identify the vector values with a well defined situation of the robot. However,
this does not mean that the situation will be the same for other robots or
other tasks, where understandable human meanings are assigned to the vector
models; that is, it may ocur that the robot creates internal vector states that
correspond to a situation interesting (i.e. meaningful) for the robot itself, but
where we cannot identify a situation from an external human point of view.

Automatic algorithms for model vectors extraction allow the extraction of
model vectors in more complex controllers with dozens of components. In this
section, it has been demonstrated that the ARAVQ algorithm is a perfect candi-
date to extract the model vectors in an automatic way. But, more interestingly,
what has been shown is that what the algorithm extracts really corresponds to
the states that emerged from the DAIR architecture, and nothing more. Related
to the automatic procedure for model vector extraction, it could be argued that
the architecture did not create the models, if only the automatic way was used.
It could be argued that the algorithm is the one generating the models after

Table 8.7: Table of model vectors identified by the ARAVQ algorithm when ap-
plied to the state vector of figure 8.6. Association with states has been manually
performed.
ARAVQ model IHU Sx IHU Sy IHU Ml IHU Mr Manual model

1 0.9 0.11 0.49 0.96 a
2 0.7 0.1 0.58 0.91 d1

3 0.37 0.1 0.74 0.74 d2

4 0.17 0.11 0.82 0.58 d3
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processing the mixed and large quantity of data obtained from the IHU’s. But,
by comparing the results obtained manually, and the results obtained automat-
ically, we have shown that the ARAVQ is not performing any extra processing,
it simply performs automatically what had been manually performed.

8.4 Garbage collector behaviour state vector analy-

sis

The example with the orbiting robot illustrated how the inner state vector
works for a simple task in a simple robot, and how model vectors can be either
manually or automatically identified. The state vector actually indicates an
internal state for the robot, given by its current situation. Now, a more complex
robot and task are selected to observe how the state vector behaves in such
situation. The Khepera robot and the garbage collector problem are selected,
as described and evolved in section 5.1, and the best of the DAIR controllers
evolved in chapter 5 is used for the analysis.

8.4.1 The garbage collector state vector

The state vector for this robot is composed of the following components, related
to the outputs of each IHU that compose the DAIR controller,

state vector(t) = (OSA
(t), OSB

(t), OSC
(t), OSD

(t), OSE
(t), OSF

(t), OSG
(t),

OMl
(t), OMr

(t), OPt
(t), OPr

(t))

where OSi
(t) is the output of the IHU associated to the sensor Si for i = A . . . G,

OMj
(t) are the outputs of the IHU’s for the motors, and OPk

(t) are the outputs
of IHU procedures take, k = t, and release, k = r.

The problem to be faced when studying this state vector is that it contains a
large number of components. Furthermore, when the robot detects something,
a quick change between states is produced, which makes it difficult to observe a
steady state in interesting situations like categorizing something detected as a
stick. Each of the situations must be separately studied in a similar, but more
complex manner than for the contour-following example.

8.4.2 Identified model vectors

In order to identify whether the robot evolved any set of stable well-defined
states, some experiments were performed. The experiments consisted of allo-
cating the robot in a special situation, and then to activate the obtained garbage
collector controller using the tactical modularization. The values given by the
sensor IHU modules were then measured. The situations selected were the fol-
lowing:

• the robot is moving in a free space with no obstacles around.
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Figure 8.7: State vector for movement in free space, for the robot not carrying
a stick (left) and for the robot carrying a stick (right). Both motor IHU’s
(IHU Ml and IHU Mr) maintain the same output value that makes the robot
move forward until some object is detected.

• the robot detects a stick with different sensors.

• the robot detects a wall with different sensors.

All three different situations were tested with and without carrying a stick.

8.4.2.1 Moving around in a free space with no obstacles around

In this case the vector state remains in a steady state, moving both motors at
the same speed. This behaviour sooner or later results in the robot sensing
an obstacle, either a wall or a stick. Until this happens, the robot keeps on
moving forward. The same behaviour is observed whether the robot is carrying
a stick or not. The vector state is shown in figure 8.7 for several time steps.
It is observed that the state vector remains constant in both cases, whether
carrying or not carrying a stick. There are no oscillations of any type in the
model vector, and both models are almost the same except for the fact that the
IHU SG changes its value when carrying a stick.

The first model vector can be defined as follows:

Situation 1 Free space. This category is obtained when the robot detects
nothing with its A to F sensors. The robot is put in the middle of the
arena and no obstacles are beside it. After an initial transient time, the
robot starts moving forward, assuming a stable state where the values
of the IHU’s outputs do not change at all. This state makes the robot
advance forward. This behaviour ensures that the robot will eventually
detect either the wall or a stick. The model vector values for this situation
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Figure 8.8: State vector of the robot when detects a stick with sensor A at
different distances. The left figure is without carrying a stick, the right figure
of the robot carrying a stick.

vary slightly in the IHU output, depending whether the robot is carrying
the stick or not. The model vector values for this state are

• Without stick (State-1-a) state vector(t) =

(.05, 0, .99, .99, .97, 0, .10, .99, .98, 0, 0)

• With stick (State-1-b) state vector(t) =

(0, 0, .99, .99, .99, 0, .99, .99, .99, 0, 0)

8.4.2.2 Robot detects a stick with different sensors

This situation is produced when the robot is moving around the free space,
and at some time, it detects a stick with one of its sensors. This situation is
reproduced by placing the robot in front of a stick at different distances, and only
in front of a single sensor. The same situation is repeated for each of the robot
sensors, and state vector variations are observed under those circumstances,
looking for the emergence of steady states as in the case of the contour-following
behaviour.

Robot detects a stick with sensor A. In this case, the state vector acquires
a constant value for all the range of measured distances by sensor A. In fact,
it does not discriminate against the state whether it carries a stick or not.
Furthermore, the vector is the same, in practical terms, as in the case of the
robot in a free space. The model vector can be defined as follows,

Situation 2 The model vector values for this state are:
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Figure 8.9: State vector of the robot when detecting a stick with sensor B at
different distances. The left figure is without carrying a stick, the right figure
is the robot carrying a stick.

• Without stick (State-2-a) state vector(t) =

(.01, 0, .99, .99, .97, 0, .09, .99, .98, 0, 0)

• With stick (State-2-b) state vector(t) =

(0, 0, .99, .99, .99, 0, .99, .99, .99, 0, 0)

By comparing the model vectors obtained for state-1 and for state-2, it is
observed that both represent exactly the same state. This means that the robot
is treating both situations as the same, either when is not detecting something
or when is detecting something with the sensor A. For the robot, both situations
provide the same information related to the task at hand, that is, they have the
same meaning, from the robot’s point of view.

The robot detects a stick with sensor B. In this case the robot detects the
stick with sensor B. When the stick is detected closer than a certain threshold
distance provided by the associated IHU, SB = 0.45 in this case, then the
robot avoids the stick, - either while it is carrying a stick or while it is not,
by reducing the speed of the right motor. In the first instance, the robot just
reduces the speed a little, enough to avoid the stick on time. But, if the distance
to the stick is smaller than a second IHU-emerged threshold, SB = 0.6, then
a complete emergency turn is activated by motor right going backwards. The
same situation can be observed in the case of the robot carrying a stick. Three
different model vectors exist for this behaviour.

Situation 3 The model vector values for this state are:
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Figure 8.10: State vector of the robot when detects a stick with sensor C at
different distances. The figure on the left is the case without carrying a stick,
on the right for the robot carrying a stick.

• Without stick (State-3-a-{1,2,3}) state vector(t) =

(.05, 0, .99, .99, .97, 0, .10, .99, .98, 0, 0) , SB < .45
(.03, p1, p2, 1, p3, 0, .02, 1, .71, 0, 0)) , SB ∈ [.45, .6]
(0, .99, .89, 1, .34, 0, 0, .97, 0, 0, 0) , SB > .6

• With stick (State-3-b-{1,2,3}) state vector(t) =

(0, 0, .99, 1, .99, 0, .99, .99, .99, 0, 0) , SB < .45
(0, p1, p2, 1, p3, 0, p4, 1, .45, 0, 0) , SB ∈ [.45, .6]
(0, .99, .88, 1, .58, 0, .79, .98, 0, 0, 0) , SB > .6

where pk, k = 1, . . . 4 are proportional values to the sensed value SB.

Robot detects a stick with sensor C. Let’s first describe the situation
experienced by the robot when it is carrying a stick (figure 8.10-right). In this
case, the robot recognizes the different distances at which the stick is detected,
by changing the values of the IHU-SC and IHU-SE. Their value decreases as the
sensor value increases. However, the strategy of the motors does not change at
any point, that is, the robot turns at maximum speed at any distance detected
by the sensor, trying to avoid the stick in front of it.

In the case that the robot is not carrying a stick (figure 8.10-left), the state
remains stable up to a certain detection threshold in sensor C. If the distance
detected corresponds to a sensor value below 0.45, the robot will act as if it
was in a free space. Once the sensor detects the stick closer than that distance,
it will activate the take procedure. At the same time, it will reduce the speed
of the right motor. This is due to the fact that the robot was trained for the
replacement of a stick in front of it once one was picked up.
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Figure 8.11: Close-up of the state vector of the robot when detects a stick with
sensor C at a distance closer than 0.45. The internal state becomes oscillatory.

The state of the robot is expressed as an oscillatory pattern, as is shown
in figure 8.11. Those IHU’s that oscillate all perform the oscillation at the
same frequency. This makes sense, since all the IHU’s are coupled. Another
observation is that the amplitude of the oscillation varies with the distance to
the object, that is, when the distance to the object decreases, the amplitude of
the oscillation increases. This amplitude reaches a maximum value when the
value sensed by sensor SC reaches the 0.6 value. After that value, the oscillation
maintains its amplitude for any other sensed value above that threshold.

The IHU’s involved in the oscillation are: IHU-SA, IHU-SB , IHU-SC , IHU-
SD, IHU-SE , IHU-SG, IHU-Mr, IHU-Pt. Appendix F shows the figures of the
time evolution of each IHU and their spectral components calculated from the
Fast Fourrier Transform of their time series. The figures show how signals
oscillate at 2 Hz, given that each time step is of 100 ms of duration.

Situation 4 Based on the oscillation frequency of the different signals the
model vector values for this situation are:

• Without stick (State-4-a-{1,2}) state vector(t) =

(.05, 0, .99, .99, .97, 0, .10, .99, .98, 0, 0) , SC ≤ .45
(pSas(0), pSbs(−.2378), pScs(−.0858), pSds(2.08), pSes(1.71),
0, pSgs(2.21), .94, pMrs(2.98), pPts(−1.37), 0) , SC > .45

with s(n) = sin(4π + n).
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Figure 8.12: State vector of the robot when detects a stick with sensors C and
D, at different distances. When not carrying a stick (left) and when carrying it
(right).

• With stick (State-4-b-{1,2}) state vector(t) =

(0, 0, .95, .99, .99, 0, .99, .99, .99, 0, 0) , SC ≤ .1
(01, 0, p1, .99, p2, 0, .99, .99, .99, 0, 0) , SC > .1

where p1, p2, pSa, pSb, pSc, pSd, pSe, pSg, pMr, pPt take proportional values
to the sensor distances detected.

The situation State-4 contains a periodic signal of a certain frequency. This
state will be defined as a non-tonic state, that is, a state which is bounded, but
it is not steady. On the other hand, States 1 to 3 will be defined as tonic states.
In the case of the contour-following experiment, all the states are tonic.

The robot detects a stick with both sensors C and D. When the robot
is not carrying a stick, the state vector presents three different model vectors;
two of them being non-tonic states. The three different state vectors depend
on the distance detected by the sensors. When the robot distance detected is
below 0.45, according to the IHU interpretation, the state vector is the same
as the robot being in free space. When the sensor value is above 0.45 the first
non-tonic state appears, with the robot capturing the stick (activation of the
take procedure, and reduction of the right motor velocity). On the other hand,
when the distance detected is above 0.6 another non-tonic state appears, where
a simple avoidance behaviour is activated by reducing the speed of the right
wheel.

Situation 5 The model vector values are:
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Figure 8.13: Close-up of the state vector of the robot when it detects a stick
with sensors C and D, at different distances. For the case without carrying a
stick (left), and for the robot carrying a stick (right).

• Without stick (State-5-a-{1,2,3}) state vector(t) =

(.05, 0, .99, .99, .97, 0, .10, .99, .98, 0, 0) , SC, SD < .45
(pSas(0), 0, .9, pSds(2.158), pSes(2.632), 0, 0, .99, pMrs(3.082),
pPts(−0.995), 0) , SC, SD ∈ [.45, .6]
(pSas(0), pSbs(1.189), pScs(1.4468), 0, 0, 0, 0, .99, 0, .05, 0) ,

SC, SD > .6

with s(n) = sin(4π + n) for State-5-a-2 and s(n) = sin(5π + n) for
State-5-a-3.

• With stick (State-5-b-{1,2}) state vector(t) =

(0, 0, .95, .99, .99, 0, .99, .99, .99, 0, 0) , SB < .5
(pSas(0), pSbs(1.99), pScs(−.942), pSds(1.04), pSes(1.93), 0,

pSgs(−2.07), pMls(1.15), pMrs(−1.76), 0, 0) , SB ≥ .5

with s(n) = sin(6.5π + n).

The robot detects a stick with sensor D. As in the previous case of
sensors C and D, when the robot does not carry a stick two non-tonic states
are observed: when the distance detected is above 0.45, the robot turns to the
right by reducing its right wheel speed (this behaviour will place the robot on
the same spot as the stick’s previous location, as detected by sensors C and D);
and when the distance detected is above 0.6, the robot will just activate the take
procedure. In the case of the robot carrying a stick, the behaviour of the robot
remains the same for all the distances, but its internal state does not. When
above a threshold of 0.45, the inner state of the robot starts to progressively
change.

186



8.4. GARBAGE COLLECTOR BEHAVIOUR STATE VECTOR ANALYSIS

Figure 8.14: State vector of the robot when it detects a stick with sensor D

at different distances. The figure on the left is when not carrying a stick, and
figure on the right when carrying a stick.

It is interesting to observe how, in the case of the robot carrying a stick
the internal state changes, the IHU output of the sensors changes but not of
the actuators, even if no action is taken. This implies that not all internal
states have an associated action, but just pure internal states. In fact, any
human meaning to that situation can be assigned, but the robot has found it
worthwhile to generate such state specification.

Situation 6 The model vector values for this state are:

• Without stick (State-6-a-{1,2,3}) state vector(t) =

(.05, 0, .99, .99, .97, 0, .10, .99, .98, 0, 0), SD < .45
(pSas(0), 0, .99, pSds(1.68), pSes(−2.16), 0, 0, 1, pMrs̄(0), .01, 0) ,

SD ∈ [.45, .6]
(pSas(0), .05, 1, pSds(1.68), pSes(−2.16), 0, 0, 1, 0, 0,

pPts(−1.267)) , SD > .6

with s(n) = sin(10π + n), s̄(n) = sin(2π + n) for State-6-a-2 and
s(n) = sin(6.5π + n) for State-6-a-3.

• (b) With stick (State-6-b-{1,2}) state vector(t) =

(0, 0, .99, .99, .97, 0, 1, .99, .99, 0, 0) , SD < .45
(0, 0, .99, p1, p2, 0, 1, 1, 1, 0, 0) , SD ≥ .45

with p1 and p2 being proportional values to SD.

Robot detects a stick with sensor E. In both situations, - whether car-
rying or not carrying a stick, there are two possible states, both of them tonic:
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Figure 8.15: State vector of the robot when detects a stick with sensor E at
different distances. The left figure is when not carrying a stick, the right figure
of the robot when carrying a stick.

when the robot is far from the stick and decides to turn to it smoothly, at a
speed proportional to the distance detected; and when the robot just rotates at
a maximal speed.

Situation 7 The model vector values for this situation are:

• Without stick (State-7-a-{1,2}) state vector(t) =

(.02, 0, .99, .99, p1, 0, .10, .99, p2, 0, 0) , SE < .2
(0, 0, .99, .99, 0, 0, .02, .99, 0, 0, 0) , SE ≥ .2

with p1 and p2 proportional values to SE for State-7-a-1.

• With stick (State-7-b-{1,2}) state vector(t) =

(0, 0, .99, .99, p1, 0, 1, .99, p2, 0, 0) , SE < .2
(0, 0, .99, .99, 0, 0, 1, 1, .19, 0, 0) , SE ≥ .2

The robot detects a stick with sensor F. Basically, the controller pays
no attention to what is detected by sensor F .

Situation 8 Model vector values are:

• Without stick (State-8-a) state vector(t) =

(0, 0, .99, .99, .99, 0, .99, .99, 1, 0, 0)

• With stick (State-8-b) state vector(t) =

(.05, 0, 1, 1, .97, 0, .1, 1, .98, 0, 0)
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Figure 8.16: State vector of the robot when detects a stick with sensor F at
different distances. The left figure is the case without carrying a stick, the right
figure for the robot carrying a stick.

8.4.2.3 The robot in front of a wall at different angles

These situations are produced when the robot is moving around the free space,
and at some stage it detects a wall with one or more of its sensors. The same
experimental analysis as in the previous section is performed. The robot is
placed in front of a wall with one sensor at a time pointing towards it. The
robot is then manually moved towards the wall and the resulting state vector is
plotted.

The robot detects a wall with sensor A. For the case of the robot not
carrying a stick, three different situations can be distinguished: when the robot
does nothing, when the robot produces a turn proportional to the values sensed,
and when the robot turns at full speed. For the case of the robot carrying a
stick, the same three situations can be observed, except that the output of the
motors is on-off.

Situation 9 The model vector values for this state are:

• Without stick (State-9-a-{1,2,3}) state vector(t) =

(.01, 0, .99, .99, .98, 0, .1, .99, .98, 0, 0) , SA < .76, SB < .49
(0, .99, .89, .99, .35, 0, 0, .97, 0, 0, 0) , SA > .87, SB > .65
(0, p1, p2, .99, p3, 0, .03, .99, p4, 0, 0) , otherwise

• With stick (State-9-b-{1,2,3}) state vector(t) =

(0, 0, .99, .99, .99, 0, .99, .99, .99, 0, 0) , SA < .75, SB < .47
(0, .99, .87, .99, .57, 0, .79, .97, 0, 0, 0) , SA > .94, SB > .75
(0, p1, .98, .99, .97, 0, .99, .99, .99, 0, 0) , otherwise
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Figure 8.17: State vector of the robot when it detects a wall with sensor A

at different distances. The left figure is the case without carrying a stick, the
right figure for the robot carrying a stick. Both figures show that at a given
distance of the wall, the robot detects it with two sensors Sa and SB, due to
their proximity.

The robot detects a wall with sensor B. Interactions between the different
IHU’s make very difficult to analyze those states. Furthermore, some of the
states are really quick and short transitions in time. However, we can provide
a simple interpretation. In both cases, carrying and not carrying a stick, the
robot continues straight forward, with both wheels travelling at the same speed,
until the robot reaches a distance close to the wall. At that point, the robot
just tries to avoid the wall in both cases, by decreasing the speed of its right
wheel.

State 10 It can be described as follows:

• Without stick (State-10-a) state vector(t) =

(.04, 0, .99, .99, .97, 0, .10, .99, .98, 0, 0) , up to step 500
(.06, .99, p1, p2, 0, 0, 0, .72, 0, 0, 0) , from step 500

wtih p1 and p2 varying.

• With stick (State-10-b) state vector(t) =

(0, .0, .99, .99, .99, 0, .99, .99, .99, 0, 0) , up to step 265
(.1, 1, .01, 0, 0, 0, .05, .69, 0, 0, .01) , from step 265

The robot detects a wall with sensors C and D This is another non-
tonic state with complex relations between different IHU’s. The situation is
described as:
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Figure 8.18: State vector of the robot when detects a wall with sensor B at
different distances. The left figure is of the robot not carrying a stick, the right
figure of the robot carrying a stick.

Figure 8.19: State vector of the robot when it detects a wall with sensors C and
D at different distances. The left figure is of the robot not carrying a stick, the
right figure of the robot carrying a stick.
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Figure 8.20: State vector of the robot when it detects a wall with sensor E at
different distances. The left figure is of the robot not carrying a stick, the right
figure of the robot carrying a stick.

Situation 11 The model vector values for this state are:

• Without stick (State-11-a-{1,2,3}) state vector(t) =

(.05, 0, 1, 1, .97, 0, .1, 1, .98, 0, 0)
(.1, 0, .9, .9, .5, 0, 0, .99, .3, 0, 0)
(pSas(0), pSbs(2.57), pScs(1.46), pSds(0.395), .97, 0, .05, pMls(0.44),
pMrs(−1.06), 0, pPrs(−1.79))

with s(n) = sin(5π + n) for State-10-a-3.

• With stick (State-11-b-{1,2,3}) state vector(t) =

(0, 0, .99, .99, .99, 0, .99, .99, .99, 0, 0)
(pSas(0), pSbs(1.72), pScs(1.13), pSds(3.12), 0, 0, pSgs(0.41),
pMls(−1.14), pMrs(−0.14), 0, 0)
(pSas(0), pSbs(1.99), pScs(0.94), pSds(1.92), 0, 0, pSgs(−2.501),
pMls(0.126), 0, 0, 0)

with s(n) = sin(6.5π+n) for State-11-b-2 and s(n) = sin(5π +n) for
State-11-b-3.

The robot detects a wall with sensor E. The situation can be defined as
follows:

Situation 12 It takes the following values for the model vectors,

• Without stick (State-12-a-{1,2,3}) state vector(t) =

(0, 0, .99, .99, .99, 0, .10, .99, .99, 0, 0)
(0, .1, .9, .9, 0, 0, 0, 1, 0, 0, 0)
(pSas(0), pSbs(.675), pScs(1.16), 0, 0, 0, 0, 1, 0, 0, 0)
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Figure 8.21: The state vector of the robot when it detects a wall with sensor F

at different distances. The left figure is the case without carrying a stick, the
right figure for the robot carrying a stick.

with s(n) = sin(5.7π + n) for State-12-a-3.

• Carrying a stick (State-12-b-{1,2,3}) state vector(t) =

(0, 0, .99, .99, .99, 0, .10, .99, .99, 0, 0)
(0, .1, .9, .9, 0, 0, 1, 1, .2, 0, 0)
(pSas(0), pSbs(−5.53), pScs(−.67), 0.1, 0, 0, pSgs(−1.02), 1, 0, 0, 0)

with s(n) = sin(6.8π + n) for State-12-b-3.

The robot detects a wall with sensor F When the robot experiences this
situation, its behaviour is more or less the same; either it is carrying or it isn’t
carrying a stick. In both cases, the robot does not pay any attention to the
wall until sensor E also starts to detect the wall. When this happens, the robot
reduces the speed of the right motor in order to turn to the right. All the states
observed are tonic states.

Situation 13 The model vector values for this state are:

• Without stick (State-13-a-{1,2}) state vector(t) =

(.05, 0, .99, .99, .97, 0, .10, .99, .98, 0, 0) , SE < .1
(.05, 0, .99, .99, p1, 0, .10, .99, p2, 0, 0) , SE > .1

with p1 and p2 proportional values to the SE sensor up to the mini-
mum value of 0.0.

• With stick (State-13-b-{1,2}) state vector(t) =

(.05, 0, .99, .99, .97, 0, .10, .99, .98, 0, 0) , SE < .1
(.05, 0, .99, .99, p1, 0, .10, .99, p2, 0, 0) , SE > .1
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α δ ε n
0.03 0.2 0.4 3

Table 8.8: ARAVQ parameters used for the extraction of states in the garbage
collector behaviour.

with p1 and p2 proportional values to the SE sensor up to the mini-
mum value of 0.0 for p1 and 0.2 for p2.

8.4.3 Automatic extraction of states

In the case of the garbage collector problem, the automatic extraction of states
can be applied up to a certain point. The ARAVQ method employed is not able
to detect oscillatory states since the algorithm is based on a moving average.
However, it is observed that during a normal execution of the garbage collector
controller, oscillatory states are never produced, since the whole controlling
situation is performed in a continuous way. Instead of oscillatory states, a dance
of IHU values is obtained, modifying the situation the robot will experience in
the next step, avoiding the robot being trapped in an oscillatory state.

However, even if no oscillations appear, in most of the situations found by
the garbage controller, the controller state only lasts for a single time step,
preventing this fact the detection of those states by ARAVQ. Then, neither is it
possible to observe the state in a steady manner, as happened with the contour-
following, nor with an ARAVQ analysis, since the duration of the states is
very short. An application of the ARAVQ algorithm to a complete run of the
garbage collector provides, of course, a set of detected states, but just a few
of them are identified because short duration in time for other ones, in fact, a
single time step. In table 8.9 the situations identified for the ARAVQ algorithm
when applied to a typical run of the garbage collector can be observed 3, using
parameters displayed in table 8.8.

More than the results obtained, what is interesting here, is that the current
state of the robot can be identified by looking at the internal state vector, even
if the state only lasts for a single time step. A better way of automatically
extracting the states is work for the future.

8.5 Aibo behaviours state vector analysis

The vector state for any Aibo controller evolved in previous chapters contains
too many components to analyze manually, as has been completed in sections
8.3 and 8.4 for the contour-following controller and the garbage collector. Fur-
thermore, it is not possible to put the Aibo robot in a static defined situation
to observe the evolution of its state. The only way to analyze the state vectors
and discover its model vectors is by using the automatic approach while the

3Video of the run used is available at www.ouroboros.org/thesis
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Table 8.9: List of model vectors discovered by the ARAVQ algorithm when
parameters in table 8.8 are used.
IHU− SA SB SC SD SE SF SG ML MR PT PR

1 0 0 1 1 1 0 0 1 1 0 0
2 0 0 1 1 1 0 1 1 1 0 0
3 .2 1 .45 .2 0 0 0 .84 0 0 0
4 0 .67 1 1 0 0 0 1 0 0 0
5 0 0 1 1 .3 0 1 1 .55 0 0
6 0 1 .6 1 0 0 0 1 0 0 0
7 0 .6 1 1 .67 0 0 1 0 0 0
8 0 1 1 1 .8 0 1 1 .35 0 0
9 0 0 .4 .8 0 0 1 1 .4 0 0
10 .2 0 .5 1 .65 0 0 1 .7 0 0

Table 8.10: ARAVQ parameters used, and results obtained for the extraction of
states in the Aibo standup behaviour. MA stands for moving average and Mv
for Model vector. d stands for deviation.

α δ ε n # models MA d. Mv d.
0.03 0.02 0.6 10 8 0.341 0.35
0.03 0.2 0.6 10 2 0.341 0.356
0.03 0.02 0.06 10 0 0.341 0.08

robot is performing the required task. Just to have an idea of what the states
would look like, the ARAVQ algorithm was applied to extract some of the pos-
sible states that the controller is generating4. The following sections show the
results obtained when applied to two examples: the Aibo stand up and the Aibo
walking behaviours.

8.5.1 Aibo stand up

The final parameters used in the ARAVQ algorithm are displayed in table
8.10. Depending on the values of the parameters the number of different vectors
found ranges from 8 to 1 (with the parameters used). This implies a good
reduction of the sensory state but only from a static analysis of the evolution
of the state vector. More complex analysis may be required to really obtain the
relevant states for the task, like happenned in the garbage collector problem.

8.5.2 Aibo walking

4Future work will be to implement a better system that automatically extracts all the
states created by a giving controller.
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Figure 8.22: Aibo stand up behaviour state vector. Each plot shows, from top
to bottom, and from left to right, the IHU output of sensors.
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Figure 8.23: Aibo walking behaviour state vector.
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Table 8.11: ARAVQ parameters used for the extraction of states in the Aibo
walking behaviour

α δ ε n # models MA d. Mv d.
0.03 0.002 0.6 2 6 0.8 1.765
0.03 0.002 0.6 10 0 1.198 0.6
0.03 0.02 0.06 2 0 0.8 0.8

The final parameters used in the ARAVQ algorithm are displayed in table
8.11. The same situation as in the Aibo standup task is observed for this case.
A more complex analysis is required to really observe the model vector which
are relevant for the task.

8.6 Discussion

From the results obtained analyzing the contour-following behaviour and the
garbage collector behaviour, it can be observed that DAIR controllers for each
behaviour produce similar output patterns in similar situations. The sensor
IHU’s provided the same output values to different sensor values which corre-
sponded to the same conceptual situation. Therefore, the sensor IHU’s were
classifying a number of different sensory states all into the same conceptual
category or meaning. The different categories or meanings can be accessed by
using what we call the state vector of the robot at a given time step. The state
vector is formed by the concatenation of the output values of the sensors IHU’s
at each time step.

The state vector identifies the situation of the robot for each time step.
Basically, it can be seen as a categorization of its current situation, or as an
internal modelling of the outside world that the robot is experiencing at that
particular moment. This internal representation at the IHU level contains the
meaning of the situation, and that meaning is attached to the present sensor
activity pattern. Changes in the values of the sensors did not change the state
vector, unless a change in the situation of the robot, relevant for the task to solve,
was produced. Changes from one state to another one are not instantaneous
and they involve a transient time where the IHU’s exchange information and
finally adopt the new state.

The internal representations that map the sensory stimulation to the cat-
egory actually being experienced are automatically created by the evolution-
ary process while interacting with the environment. Hence, the meanings are
grounded on the robot experiences. This means that the actual states identified
by the robot have to signify meaning for the robot. However, this meaning does
not have to correspond to a human meaning, but rather a meaningful state for
the robot about the task to be solved.

In fact, we think that this is exactly what actually happens when in the case
of the garbage collector, changes in the sensor values generate changes in the
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sensor IHU’s values, but the actuator IHU’s mantain the same output (action).
This can be seen as an internal meaning (or state) that we cannot correspond
to a human meaning.

For the garbage collector problem, the robot identifies only a few possible
states as required for the solution of the task at hand, allowing it to reduce the
huge number of possible sensor inputs and robot states to a reduced number
of relevant ones. A group of sensors values will always correspond to a unique
single meaning or category. It represents a huge reduction from the high number
of possible situations that raw sensed data provide. The internal states created
by the system identify those states that have a real semantic value, and that
value is grounded to the experiences of the robot.

A meaning can be attributed to each of those vectors, from an external
human point of view. It should be clearly stated that those meanings have been
assigned by us (humans) to the robot’s different situations, and that the robot
is not aware of it knowing those meanings. However, what the robot has done
is the automatic creation of a categorization of situations, that is, the robot
has emerged a system by which the current situation that it is experiencing is
described by the state vector. The robot categorizes its current situation into
a simple set of possible ones, and all the situations are categorized into one of
these possible categories.

The advantage of the DAIR architecture against other modular and non-
modular architectures is that the categorization emerged is directly accessible
to an observer outside of the network-based controller, that is, the meanings
are not internally coded in the network weights. This means that it is possible
to directly access the robot’s situation from a conceptual point of view simply
by looking at the IHU sensor outputs. This type of direct access to the gen-
erated meanings may not be necessary in biologically intelligent systems, but
scientists feel more comfortable when such differentiation is possible as it makes
the whole process easier to understand. Furthermore, it may assist in maintain-
ing the correspondence between syntax and semantics. This could be achieved
by accessing the meanings created by a more deliberative superior layer, which
would use them to (syntactically) think about its situation, in this way prop-
agating the robot-acquired meanings to more syntactic processes, as a kind of
reification engine [Gunderson and Gunderson, 2009].

From another point of view, the actuation of the architecture can be seen
as an extractor of meaningful events which are relevant for the resolution of the
task. The architecture is capable of converting a continuous flow of sensory data
into a discrete number of meaningful situations. We will call these situations
events. A new event is generated each time that the robot thinks the situation
changes. And the situation changes when the robot itself thinks that the new
sensory flow corresponds to something really different from previous situation;
it in fact creates a categorization of experiences that are useful for the task
at hand. This behaviour is similar to the ARAVQ event extractor algorithm
[Linaker and Niklasson, 2000], with the difference that the ARAVQ extracts
events from the information gathered by a robot that already knows how to
solve the task. The introduced architecture, on the other hand, learns to extract
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the events whilst simultaneously learning how to perform the task.
When categorizing, an agent situated in the real world has to be able to

make distinctions between different types of objects and situations from the
sensed values. This subject has been studied by others researchers [Nolfi, 1997,
Pfeifer and Scheier, 1997]. They proposed sensorimotor coordination as the key
to categorization, and argued that it is necessary to replace the information pro-
cessing metaphor with a sensorimotor metaphor. This sensorimotor approach
has been used in several studies like [Choe and Bhamidipati, 2004], where sen-
sorimotor couplings assigned a meaning to the sensor state through sensory-
invariance driven action, or [Philipona et al., 2003], where the external space of
the robot was inferred from sensorimotor dependencies.

These observed states indicate that the DAIR architecture indeed uses the
sensorimotor coordination metaphor to produce its categorization. The clearest
example is the result obtained in Situation 3 for the garbage collector problem,
when the robot detects something but cannot identify what it is. This situation
indicates that the robot is having perceptual aliasing. Its strategy to solve the
situation is to move itself into a more convenient position which provides it with
a more convenient sensor input which in turn permits it to better determine what
is in front of it. This type of behaviour is what has been referred to as active
perception [Nolfi and Marocco, 2002]

Another consequence of the results obtained here is that they may lead to
the automatic generation of rules from neural networks.

8.7 Conclusions

An analysis of the inner workings of the DAIR architecture has been provided.
The analysis has only been performed for reactive behaviours and situations
(orbit behaviour and garbage collector). We have shown how a DAIR-based
controller is able to create a meaningful internal representation of the robot’s
current situation directly grounded on its sensorimotor system. In simple cases
a manual detection of the robot meanings has been performed, and even an
automatic way based on ARAVQ has been used. For more complex cases, like
the walking for Aibo, other more complex analysis techniques may be required
due to the fact that they include internal states within their IHU modules, hence
complexifying the analysis of the state vector. Proposed solutions are: to use
neural nets with recurrent connections to discern the states, or to use dynamical
systems (in a similar way as has been done in [Montebelli et al., 2008]).

What is important here is not whether we have identified a set of stable
states or whether we have been able to assign a meaning to them; what is
important is that the architecture has been able to generate a set of internal
states from its interaction with the environment. Furthermore, these states are
easily accessible from the outside by looking at the IHU outputs, and could be
used for further deliberative purposes
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9
Conclusions

This section summarizes the main results of this research and how they con-
tribute to answer the questions that have driven this thesis:

1. How can neural network-based controllers be designed for complex robots?

2. Are modular neural networks more suitable than monolithic ones networks
for controlling them?

3. How can information about the behaviour to generate be better used?
Can we constrain its use?

Obtained results are compared to related works. Additional analysis of the
results obtained and a discussion about how they can shed some light on different
fields of artificial intelligence are also provided. The chapter ends with a list of
future related works.

9.1 ANN’s for the control of complex robots

The work elaborated for this thesis provides an answer to the question of how to
create neural controllers for complex robots. The approach introduced is based
on neuro-evolutionary methods for neural network training. This approach, de-
scribed in chapter 4, lies in a high level of modularization for the controller going
beyond the more usual behaviour-based modularization, and the ability to train
these modules separately in a closely related task. The proposed methodology
has been validated by testing it in a variety of different robots and different
behaviours, both real and simulated, with satisfactory results.

When compared with other architectures (modular and monolithic) in ex-
periments, the DAIR architecture proves to be one of the best. Furthermore,
results in chapter 5 show that all of the modular architectures analyzed per-
form better than their monolithic counterparts. On top of this, as the level of
modularization increases, so does the performance. So, the results obtained,
even if not providing an entirely conclusive answer to the question of whether
to use modular or monolithic systems, do shift the answer in favour of modular
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networks being more adequate for the control of complex robots with complex
behaviours.

In the DAIR approach,the evolutionary process is completely guided by the
information about the required behaviour. All the available information can
be used to evolve one single module or combination of them. Due to the char-
acteristics of the architecture, information can be introduced into only those
parts of the controller that the designer believes should be affected by it. It has
been claimed that the use of information bias in the evolutionary process can-
not be avoided due to the great constraints introduced in the evolution of the
controller, as stated in chapter 6. Since it looks like the information is required,
we make use of it as much as possible and design the process to benifit as much
as possible from it.

9.1.1 Advantages of the DAIR method

Our approach is presented as a neural network-based modular architecture for
controllers, trained by a neuro-evolutionary learning method, for robotic systems
composed of multiple sensors and actuators. Our method has the following
advantages:

1. By evolving modules separately, the search space dimension that the evo-
lutionary algorithm has to afford is significatively reduced. This is what
staged evolution attempts to accomplish.

2. At each new stage, the newly added modules will start evolving not from
a random position in the search space, but from a place provided by the
previous stage which should be related to the new task to be evolved,
making it easier to obtain the desired behaviour. This is what incremental
evolution sets out to accomplish.

The DAIR method therefore combines both techniques (staged evolution and in-
cremental evolution) into a single method, obtaining what we call as progressive
design. The method is also general in terms of both robot and task.

As was described in chapter 2, staged evolution and incremental evolution
were successfully applied separately in other works. Some examples of incremen-
tal evolution are [Gomez and Miikkulainen, 1996, Gómez and Miikkulainen, 1999,
Yong and Miikkulainen, 2001, Islam et al., 2001] and those for staged evolution
[Lara et al., 2001]. Also, some works have designed particular cases of the DAIR
approach where both the processes of staged and incremental evolution were
performed [Ijspeert, 2001, Hallam and Ijspeert, 2003].

Additionally, the robot controller’s current state can be checked at any point
in time using the DAIR architecture, simply by looking at its state vector,
as described in chapter 7. In some research frameworks, there exists some
opposition to the use of ANN’s in any environment, mainly because they act as
a black box. That is, what the network is performing cannot be inferred from
the controller’s output (i.e., the action performed by the controller). The DAIR
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architecture, even if it does not provide a complete insight, offers us a glimpse
into the controller’s inner behaviour by allowing access to the state vector.

The main difference with other neural controllers lies in the fact that sensors
and actuators outputs are accessible, instead of only having access to the ac-
tuation, as provided by other controllers. This actuation only feature does not
allow one to infer any information of the inner working of the controller. The
DAIR architecture, by providing access to its inner state, allows for a better
analysis of what is happenning inside the controller. More importantly though,
this inner state represents the current situation as the robot is experiencing it.
The robot has created its experiences and shows them to us by way of the state
vector.

9.1.2 Drawbacks for highly complex robots

DAIR architecture has proven to function well with a complex Aibo robot, where
more than 30 modules were required. However, it is difficult to assertain from
this experimental result whether the architecture would scale well to robots with
hundreds of modules1. Two main problems may arise:

1. When the number of modules is so large, it can be difficult to identify
precisely which modules to use to start the evolutionary process, and which
type of task to assign to them. This problem can be of the same nature as
that of identifying which behaviours are required to control a robot when
using a behaviour-based architecture. A good knowledge of the task that
the robot must accomplish will help in determining the progressive design
process.

2. When the number of elements in the controller increases, the newly added
modules in the last stage will have to interface with many previously
evolved modules. In such cases, two possible situations are devised:

(a) firstly, what has already been evolved has a stable solution in its m-
dimensional search space. Once new modules are added to be evolved
and the dimension increases, the number of connections to evolve at
that stage may be high, but the controller will start evolution from
a previous stable solution. These starting points will make it easier
to find solutions if the new task to evolve is close enough. In fact,
this effect was observed in section 6.3, when the Khepera robot was
evolved in stages. After every successful stage, the next evolutionary
stage with an increased number of modules started its fitness with a
very high value (see figure 6.9). The same behaviour was observed in
the evolution of the Aibo robot when additional controllers for legs
were added (see figures 6.27, 6.31 and 6.35).

1Even if such robots do not presently exist, they certainly will in the foreseeable future,
when robots will come equipped with sensors around the entire body, as well as internal state
sensors.
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(b) Secondly, due to the high degree of modularity, we are not restricted
to a fixed way of evolving the stages. Instead, we can decide which
stages best suit us and evolve different parts separately, in order to
(once finished their tasks - which may be very different), evolve the
connection between them to obtain a final global controller. This
procedure was followed in [Lara et al., 2001] and in our own work
described in chapter 6 and 7. Further work has to be done to iden-
tify whether this connection requires the use of additional neurons
to create the interface [Lara et al., 2001]. In our work, additional
neurons were not necessary, and it seems that just the additional
input connections handled the interface between separately evolved
modules.

3. The use of a staged mechanism can lead to sub-optimal solutions. Since
the group of IHU’s evolved in stage n is frozen from evolving in stage n+1,
it could result in the solution found in stage n + 1 not being optimal from
the whole controller’s point of view. This is the case for decomposable
systems, where optimization of one part depends on the actual implemen-
tation of the others. However, we will not consider this a limitation, but
rather a characteristic of working with systems with limited resources, as
happens in nature. This is related to the concept of limited rationality
[Simon, 1969]. Furthermore, since IHU’s from stage n must add the input
connections from the modules added in stage n + 1, a little tuning and
modification of the solution found in stage n is allowed.

9.2 Discussion

This section discusses the use of the DAIR approach as paradigm for the solution
of other related problems.

9.2.1 DAIR and scale-up in evolutionary robotics

One of the biggest problems that Evolutionary Robotics faces at present is that
of scaling up, that is, the use of ER in complex robots. ER has mainly been
applied to simple wheeled robots. When the same procedure is applied to more
complex robots no behaviour is obtained, as either there is no evolutionary path
available, or the search space is so large that it is almost impossible to find a
path.

To avoid this pitfall, the DAIR architecture can be introduced as a solution.
However, our approach makes a large use of bias, which is not generally desired
in evolutionary methods as it drives the evolutionary search towards a specific
place within the solutions space; the place where the engineer thinks there may
be a solution. According to our study, it is difficult to determine whether the
evolutionary method can avoid the introduction of bias if the system to evolve
is too restrictive or complex. The introduction of bias is a possible solution to
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overcome the lack of an evolutionary path. It would be a directed path though,
but a path anyway, where at present there is none.

9.2.2 Tactical modularity for resolution of general prob-
lems

Up until this point, the concepts of strategic and tactical modularity have only
been applied to the generation of control for robots. However, a step backwards
can be taken to gain a wider perspective, and apply those concepts to more
general problems where no devices exist, only abstract concepts or variables.
Above all, it implies the use of DAIR for the optimization of functions, that
is, to define the sub-goals required to generate a goal (strategic modules), and
then to create tactical modules for the elements that appear in every sub-goal.
We understand elements as the inputs required to generate the sub-goal, such
as the sensors modules, and the outputs that define the sub-goal solution, like
the actuator modules [Téllez and Angulo, 2008].

The strategic modularity concept has already been applied to such cases for
years, even though it was not previously named as such, as it has been shown
in the examples described in section 3.2. In these examples the use of tactical
modularity can also be applied; in that case, tactical modules can be seen as
variables to be optimized.

Example. Let’s define the following function,

f(x, y, z) = ax + by + cz

Four tactical modules can be defined, - one for each of the function variables
that obtains the desired values for a, b, c, and another tactical module for the
computation of the answer that implements the required f(x, y, z) function. In
the same manner as for the control of robots, a knowledge of the domain of
application is required, which allows the designer to decide which variables are
required to be controlled by a module, and what the output of the Modular
Neural Networks should be, that is, how the f(x, y, z) function is decomposed.

Applications of these ideas may include typical domains for neural networks
like pattern recognition or speech recognition, where tactical modules can be
defined for each feature that the application has to detect (sensor), and for each
answer that it has to generate (actuator).

9.2.3 Decomposable modularity

When modularity is of the decomposable type, the optimization of one module
depends on the optimization of the others (see the definition in the 3.1.1 sec-
tion). That means that strong couplings exist between the different modules
conforming the system. The DAIR approach allows for the evolution of such
couplings, and also the optimization of modules depending on the optimization
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of previous ones. Even if DAIR modules are independent by themselves, they
share dependencies with the rest of modules by means of their connection.

When evolving a group of tactical modules at different stages, modules are
independently evolved, but, when added to an existing module or group of them,
the connections between them can be seen as an influence of the new module
on the existing one, and viceversa. This effect is only intuitively described, and
future work will be to mathematically show how these decomposable modules
can be optimized in this way. Again, the drawback is that it is not an automatic
process, though the designer has to decide which modules to first optimize.

9.2.4 Tactical modularity and the robot inner world

The proposed IHU-based tactical modular architecture can be seen as a dy-
namical system approach to cognitive robotics using a controlled engineering
perspective. Our claim is that the proposed network structure of IHU’s pro-
vides the autonomous agent with an inner world based on internal represen-
tations of perception rather than an explicit representational model, following
the ideas of internal robotics in [Parisi, 2004] and the double closure scheme
in [von Foerster, 1970]. In this architecture the concept of double closure is
completely obtained, and sensors and actuators are completely coupled.

9.2.4.1 A control engineering perspective

Feedback control is a simple control structure considering inputs/outputs re-
lationships in a plant (sensorimotor control) [Kuo and Golnaraghi, 2002]. A
typical single-input, single-output (SISO) feedback control system is depicted
in figure 9.1, for which the inner world is defined as the part of the control
system corresponding to controller-based units. Similarly, the outer world is
defined as the part of the control system corresponding to process-based units,
i.e., the physical world in which the autonomous agent is situated. From a
basic control engineering perspective; in order that the whole system reaches
the set point (SP), the control elements (inner world) must be designed using a
model that mirrors the outer world as accurately as possible - the so-called pro-
cess model. Controller design procedures in control engineering are traditionally
model-based, and so the performance of the whole system depends on how well
the process has been modeled: the internal model of the outer world used to
generate the inner world must be as exact as possible to the outer world.

A particular element that can help in understanding the concept is the role of
the SP. For the effective comparison of the blocks in figure 9.1, the external SP
must be translated to an internal SP based on the same units for the controller
as for the inner world, e.g., a thermostat translates external SP’s from temper-
ature units into voltage units in a range similar to that for the conditioner. It is
usually assumed that this conditioning is known to the control engineer design-
ing the control system, so sensors and actuators are considered as part of the
process, leading to a clearer control design. However, when this knowledge is
not available, sensors and actuators are not predetermined or they are affected
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Figure 9.1: A typical SISO feedback control system.

by the environment in an unpredictable manner, and the relationship between
the conditioner, controller and translator is no longer a simple additive process.
Unlike traditional approaches, a learning procedure or teaching module must
exist for designing or modifying the agent’s internal representations and inten-
tionality. As observed in figure 9.2, the internal translation of the external SP,
which is selected in a certain sense, affects both control elements (conditioner
and controller) in an unknown, possibly non-linear manner. The autonomous
agent can be defined as the embodiment of Me, whereas the part of the au-
tonomous agent that processes information is defined as the Mind : control is
performed for three elements, the conditioner, the controller and the translator,
all of which are directly affected by, or affect the internal SP, i.e., the internal
translation of the SP and not the real world SP.

These elements comprising the mind of the autonomous agent are respon-
sible for adapting the relationship between the autonomous agent, that is, the
embodiment of the Mind, the environment, and the situation that the agent is
currently experiencing:

• The conditioner is a control element that adapts what the sensor cap-
tures from the outer world to what the mind perceives in its inner world,
considering the internal SP.

• The translator is a control element that translates the external SP, which
is in fact a goal or sub-goal associated with a task, as an interpretation of
the outer world. It is a learning function for the whole inner world system.

• The controller is a control element that relates internal perception of
the outer world, in the form of inner world units, to accomplishment of
the task at hand, - interpreted as an internal SP in inner world units. It
drives the actuator to change the body-environment situation, and needs
continuous, but not exhaustive learning to continually adapt the body to
the environment.

Broadly speaking, Me depends on the goal (goal-directed training) inter-
preted by the translator, on the environment (outer world) interpreted by the
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Figure 9.2: Mind is embodied in Me (the autonomous agent) and is situated in
an environment (the process).

conditioner, and on the body (mind, sensor and actuator) acting through the
controller. Hence, Me is based on the mind (translator–conditioner–controller).
Information from the environment is mentally presented, instead of mentally
represented : there is no need, as in the traditional approach, to consider any
accurate correspondence between the internal model and the real world via a
process model. The internal model is built from interaction of the body with the
environment; however, in contrast to [Parisi, 2004], it does not try to exactly
imitate the world, but is an interpretation of it [Kalveram et al., 2005]. The
important point is that the agent’s view of the outer world makes sense to the
agent itself. Experience and information obtained from the world are therefore
highly subjective.

9.2.4.2 Internal model: the mind–body problem

From figure 9.2 it is evident that sensor processes (hardware–software percep-
tion) and motor processes (software–hardware motion) are separated in ”Me”.
However, feedback from the outer world is not enough to achieve the von Foer-
ster concept of double closure:

“The meanings of the signals of the sensorium are determined by
the motorium; and the meanings of the signals of the motorium are
determined by the sensorium.”

Therefore, perception and motion must be connected to each other in such a
form that information has its origin in this creative circle. Motor stimuli must
also be sent to the sensor elements to ‘predict’ what to sense upon real sensation
in the outer world.

In terms of control engineering, an internal model control (IMC) structure
[Isidori et al., 2003] can be chosen to introduce the concept that an information

208



9.2. DISCUSSION

Figure 9.3: Feedback control loop with internal model control.

flow exists from the actuator control signals to the conditioner (see figure 9.3).
These signals model the environment, and hence a modeler is defined for

modeling the environment and conditioning the outer world to the inner world
units. The inner signals sent by the controller are fed back to the modeler
instead of real world signals from the actuator, since this structure does not aim
to exactly model the world, but to obtain a subjective internal representation
of the outer world. Our answer to the mind-body separation problem is shown
in figure 9.4 using the IHU control concept, i.e., mind is based on the sensors
and actuators, which are governed by a learning module that translates external
SP’s into the driving of fitness functions.

Extension of the proposed SISO control to a typical multi-input, multi-
output (MIMO) system results in a control system exactly the same as our
proposed network of IHU’s (figure 9.4).

9.2.4.3 The translator

As argued by [Cañamero, 2005], current embodied approaches are not well
enough developed to be able to model higher-level aspects of behaviours. In this
sense, our tactical modular concept represents a new reactive interpretation of
the mind based on internal representations of the real world for its design, i.e.
the control elements, to successfully carry out a task. The translator module,
converted into a teaching module external to the decentralized reactive mind,
contains the fitness functions associated with the tasks that drive learning in the
modeler and controller modules. These latter modules that translated from/to
the world signals to/from the internal representations are usually neural net-
works. Ideally, deliberative control, which is outside the scope of this study,
must be involved in the translator. Hence, fitness functions related to the task
at hand have been assumed to be known to the expert.

Although our proposed architecture is focused on the emergence of behaviour
and not on deliberative interpretation of the mind, it can facilitate the integra-
tion of both reactive and deliberative controls in two forms. Firstly, use of our
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Figure 9.4: The ”Mind” designed through collaborative IHU’s in the form of a
MIMO and the decentralized control architecture.

tactical modularity is not in opposition to the use of the strategic approach, in
fact, use of both types of modularity in the same controller could well be the
required solution for complex behaviours in complex robots. Thus, for example,
it is possible to merge our physical device-based neural network tactical modules
with the strategic modules used in [Nolfi, 1997], who demonstrated that module
switching and interaction are correlated with low-level sensorimotor mappings.

Secondly, autonomous agents (robots) beyond those completely reactive to
the environment can be obtained using recurrent neural networks, i.e., with
internal-feedback connections (internal states) in the modeler and controller
modules of each IHU, so that they can initiate action independent of the imme-
diate situation, and organize behaviour in anticipation of future events.

9.3 Future work

This section contains a list of new lines of research that will be open to continue
build on the work developed in the thesis. Apart from small parts which have
been indicated along the thesis text, there are three main subjects that can be
advised as possible lines of research. All the points discussed arose during the
creation of the thesis, and were left aside because they were too far from the
main line of research, or because there wasn’t sufficient time to explore them
all properly.

9.3.1 Tactical modularity as a walking reflex system

Tactical modularity was applied in chapter 6 to the generation of a walking Aibo
robot. The walking application was only selected as an application example of
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the architecture, but it showed how sensors and actuators could be coupled for
the generation of behaviours. Some authors have suggested that this strong
coupling between sensors and actuators in a walking system would produce a
reflex system for walking machines [ref. Jun Nishii, personal communication,
Jan, 2006]. To date, most of the walking mechanisms for robots implement an
almost open loop walking mechanism, that is, sensors are very lightly used to
correct the walking pattern on the fly [Kajita et al., 2003]. Hence, the robot
is not able to react adequately when faced with unpredicted situations in the
walking system, and is only able to walk on a limited number of surfaces in
certain environments, - only those which meet the requirements of the walker.
To improve walking behaviours, researchers have attempted to integrate a reflex
system into the walking machine that should permit the robot to react to small
perturbances to its walking [Ijspeert, 2002, Righetti and Ijspeert, 2008]. This
reflex system is usually an external separated component that takes the sensor
lectures as inputs and provides the walker with some control signal to modify
its behaviour accordingly.

Tactical modularity can be used to implement a completely coupled walk-
ing system between sensors and actuators, where the reflex system would be
embedded into the walking mechanism. The walking system, mainly driven by
the actuator signals, would have a directly coupled reflex system which is not a
separated part of the walking, but rather an integrated part of it. It is suggested
that animals have such type of a walking mechanism in order to improve their
walking behaviour [Pearson and Gordon, 2000].

9.3.2 Deliberative control

IHU’s have been shown to be able to modify their behaviour depending on the
value of an external tonic signal (see chapter 7). On top of that, chapter 8 is
devoted to show how the tactical modules are able to express their status, and
that of the robot they are controlling through the state vector. It is then possible
to design a higher control layer which reads the current state of the reactive
tactical structure, and then decides how to modify its behaviour through the
use of a tonic signal. Deliberation of the higher layer would be based on the
performance and current task required for the robot. This would include the
capacity to deliberately control complex robots using only ANN’s in the DAIR
architecture .

The deliberative layer can be created by any already existing artificial intel-
ligence method: an agent, an error minimizing function, a look-up table, etc...
However, a most interesting approach would be if the deliberation is performed
as an additional layer of tactical modules, allowing the scaling up of the same
concept architecture (see figure 9.5). In such a situation, a first reactive layer of
tactical modules would take the basic reactive control of the robot. The modules
in such a layer; let’s call them TR-IHU’s, for Tactical-Reactive IHU’s, would
learn a basic behaviour for the robot and how to slightly modify it according
to the value of a tonic signal, which may be either the same, or different for
every module. Once the reactive layer is trained in such a way, the delibera-
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tive would have to be trained. An additional layer of tactical modules can be
added for the control of the TR-IHU layer. This additional layer should learn
to modify the behaviour of the TR-IHU layer accordingly with the current task
at hand. This layer should deliberate what it’s current status is, and formu-
late a plan to achieve its goal. We will call this layer the TD-IHU’s layer, for
Tactical-Deliberative.

An example is the T-Maze experiment in [Bergfeldt and Lin̊aker, 2002] or in
[Blynel and Floreano, 2003], which has been adapted by us for the Aibo robot
(see figure 9.6). In the T-maze, the robot walks along a straight corridor; at
some moment, the robot will see a red or blue dot on the wall in front of it; the
dot will only be shown for a second. The robot has to learn that once it reaches
the crossroad, it has to turn to one side: left if the dot is red or right if the dot
is blue. Once the TR-IHU layer is trained in walking, the TD-IHU layer has to
learn to memorize and decide, and to use the TR-IHU layer for its purpose.

In such an experiment, using the DAIR structure, the TR-IHU layer should
learn to walk, and, due to the different values of the tonic signal, vary the speed
of movement of its legs (as in chapter 7) so that it should allow the stop, start
and turn behaviours from a single TR-IHU layer with different TOC values. The
TD-IHU layer should then learn to control the TR-IHU layer accordingly to solve
the T-Maze problem, by reading the state vector and setting the required TOC
values accordingly .

Deliberative control can include either the control to slightly modify the
behaviour of a given reactive layer (that is, to modify the behaviour of the
tactical modules that compose a strategic module), or the control to select
which strategic module should be activated (in a system composed of strategic
and tactical modules).

9.3.3 Liar IHU’s

To date, IHU modules have been desgined with a single output, which is used
either for action in actuator-IHU’s, or as a processed sensor value in sensor-
IHU’s. However, it could be interesting to investigate whether the architecture
improves in both learning rate and fitness value if each IHU is allowed to have
two or more outputs. The IHU would use one output for its related purpose,
and the second one to communicate a, perhaps, different bit of information to
the rest of IHU’s.

It would be interesting to observe whether such types of connections will
generate different outputs in the same IHU, giving place to a kind of liar IHU
where it says one thing but does another. Intuitively, two different outputs
may increase the flexibility of the architecture, since it is not clear that the
actuator output that is required to perform a given action by the robot is the
best information to communicate to the other IHU’s.
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Figure 9.5: A deliberative structure using tactical modules.

Figure 9.6: T-Maze simulation created to implement a TD-IHU’s solution for
the Aibo robot (by Francesc Espasa).
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A.-R., editor, Tendencias de la Mineŕıa de Datos en España., pages 1–12.

[Arbib, 1992] Arbib, M. (1992). The Encyclopedia of Artificial Intelligence (2
nd Ed), chapter Schema Theory, pages 1427–1443. Wiley Interscience.

[Arbib, 1995] Arbib, M. (1995). Handbook of brain theory and neural networks.
The MIT Press.

[Arkin, 1998] Arkin, R. (1998). Behavior-based robotics. MIT Press.

[Auda, 1996] Auda, G. (1996). Cooperative modular neural network classifiers.
PhD thesis, University of Waterloo.

[Auda and Kamel, 1997a] Auda, G. and Kamel, M. (1997a). Cmnn: Coopera-
tive modular neural networks for pattern recognition. In Pattern Recognition
in Practice V Conference.

[Auda and Kamel, 1997b] Auda, G. and Kamel, M. (1997b). Modular neural
network classifiers: a comparative study. In Proceedings of the Int. Conf.
Neural Networks Appli.

[Auda and Kamel, 1999] Auda, G. and Kamel, M. (1999). Modular neural net-
works: a survey. International Journal of Neural Systems, 9(2):129–151.

[Azam, 2000] Azam, F. (2000). Biologically inspired modular neural networks.
PhD thesis, Virginia Polytechnic Institute and State University.

[Ballard, 1986] Ballard, D. (1986). Cortical connections and parallel processing.
The behavioral and Brain sciences, 9:279–284.

[Barto et al., 1983] Barto, A., Sutton, R., and Anderson, C. (1983). Neuronlike
adaptive elements that can solve difficult learning control problems. IEEE
Transactions on Systems, Man and Cybernetics, 13(5):834–846.

214



BIBLIOGRAPHY

[Battiti and Colla, 1994] Battiti, R. and Colla, A. (1994). Democracy in neural
nets: voting schemes for classification. Neural networks, 7(4):69–707.

[Beer, 1995] Beer, R. (1995). On the dynamics of small continuous-time recur-
rent neural networks. Adaptive Behavior, 3(4):469–509.

[Beer and Gallagher, 1992] Beer, R. and Gallagher, J. (1992). Evolving dynam-
ical neural networks for adaptive behavior. Adaptive Behavior, 1(1):91–122.

[Bekey, 2005] Bekey, G. (2005). Autonomous robots. From biological inspiration
to implementation and control. The MIT Press.

[Bergfeldt and Lin̊aker, 2002] Bergfeldt, N. and Lin̊aker, F. (2002). Self-
organized modulation of a neural robot controller. In Proceedings of the
International Joint Conference on Neural Networks.

[Bianco and Nolfi, 2004] Bianco, R. and Nolfi, S. (2004). Evolving the neural
controller for a robotic arm able to grasp objects on the basis of tactile sensors.
Adaptive Behavior, 12(1):37–45.

[Billard and Ijspeert, 2000] Billard, A. and Ijspeert, A. J. (2000). Biologically
inspired neural controllers for a motor control in a quadruped robot. In
Proceedings of the International Joint Conference on Neural Network.

[Bishop, 1995] Bishop, C. M. (1995). Neural networks for pattern recognition.
Oxford University Press.

[Blynel and Floreano, 2003] Blynel, J. and Floreano, D. (2003). Exploring the
t-maze: Evolving learning-like robot behaviors using ctrnns. In Proceedings
of the EvoRobot.

[Boers and Kuiper, 1992] Boers, E. J. W. and Kuiper, H. (1992). Biological
metaphors and the design of modular artificial neural networks. Master’s
thesis, Leiden University.

[Bongard, 2002] Bongard, J. (2002). Evolving modular genetic regulatory net-
works. In Proceedings of CEC.

[Bongard, 2003] Bongard, J. (2003). Incremental approaches to the combined
evolution of a robot’s body and mind. PhD thesis, University of Zurich.

[Bongard and Pfeifer, 2003] Bongard, J. C. and Pfeifer, R. (2003). Evolving
complete agents using artificial ontogeny. In Hara, F. and Pfeifer, R., ed-
itors, Morpho-functional Machines: The New Species (Designing Embodied
Intelligence), pages 237–258. Springer-Verlag.

[Braitenberg, 1984] Braitenberg, V. (1984). Vehicles. MA: MIT Press.

[Brooks, 1986] Brooks, R. (1986). A robust layered control system for a mobile
robot. IEEE Journal of Robotics and Automation, 2(1):14–23.

215



BIBLIOGRAPHY

[Brooks, 1991] Brooks, R. (1991). Intelligence without representation. Artificial
Intelligence, 47:139–159.

[Brooks and Stein, 1994] Brooks, R. A. and Stein, L. A. (1994). Building brains
for bodies. Autonomous Robots, 1:7–25.

[Buessler and Urban, 2003] Buessler, J. and Urban, J. (2003). Biologically in-
spired robot behavior engineering, chapter Modular neural architectures for
robotics, pages 261–298. Physica-Verlag.

[Buessler et al., 2002] Buessler, J.-L., Urban, J.-P., and Gresser, J. (2002). Ad-
ditive composition of supervised self-organized maps. Neural Processing Let-
ters, 15:9–20.

[Caelli et al., 1999] Caelli, T., Guan, L., and Wen, W. (1999). Modularity in
neural computing. In Proceedings of the IEEE, volume 87, pages 1497–1518.

[Calabretta et al., 2003] Calabretta, R., Di Ferdinando, A., Wagner, G. P., and
Parisi, D. (2003). What does it take to evolve behaviorally complex organ-
isms? BioSystems, 69:245–262.

[Calabretta et al., 1998] Calabretta, R., Nolfi, S., Parisi, D., and Wagner, G.
(1998). A case study of the evolution of modularity: Towards a bridge between
evolutionary biology, artificial life, neuro and cognitive science. In C. Adami,
R. Belew, H. K. and Taylor, C., editors, Proceedings of Artificial Life VI.
MA: MIT Press.

[Calabretta et al., 2000] Calabretta, R., Nolfi, S., Parisi, D., and Wagner, G.
(2000). Duplication of modules facilitates functional specialization. Artificial
Life, 1(6):69–84.

[Calabretta and Parisi, 2005] Calabretta, R. and Parisi, D. (2005). Evolution-
ary connectionism and mind/brain modularity. In Rasskin-Gutman, W. C.
. D., editor, Modularity. Understanding the development and evolution of com-
plex natural systems, pages 309–330. The MIT Press.

[Calancie et al., 1994] Calancie, B., Needham-Shropshire, B., Jacobs, P.,
Willer, K., Zych, G., and Green, B. A. (1994). Involuntary stepping after
chronic spinal cord injury. evidence for a central rhythm generator for loco-
motion in man. Brain, 117(5):1143–1159.

[Callebaut, 2005] Callebaut, W. (2005). Modularity. Understanding the Devel-
opment and Evolution of Natural Complex Systems, chapter The ubiquity of
modularity. The MIT Press.

[Carruthers, 2004] Carruthers, P. (2004). Contemporary Debates in the Philos-
ophy of Science, chapter The mind is a system of modules shaped by natural
selection. Blackwell.

216



BIBLIOGRAPHY

[Carruthers, 2005] Carruthers, P. (2005). Contemporary Debates in Cognitive
Science, chapter The case for massively modular models of mind. Blackwell.

[Cañamero, 2005] Cañamero, L. (2005). Emotion understanding from the per-
spective of autonomous robots research. Neural Networks, 18(4):445–455.

[Chen and Chi, 1999] Chen, K. and Chi, H. (1999). A modular neural network
architecture for pattern classification based on different feature sets. Inter-
national Journal of Neural Systems, 9(6):563–581.

[Cho and Shimohara, 1997] Cho, S. B. and Shimohara, K. (1997). Emergence
of structure and function in evolutionary modular neural networks. In Pro-
ceedings of the Fourth European Conference on Artificial Life, pages 197–204.

[Choe and Bhamidipati, 2004] Choe, Y. and Bhamidipati, S. (2004). Au-
tonomous acquisition of the meaning of sensory states through sensory-
invariance driven action. In Ijspeert, A. J., Murata, M., and Wakamiya,
N., editors, Biologically Inspired Approaches to Advanced Information Tech-
nology, Lecture Notes in Computer Science, volume 3141, pages 176–188.
Springer.

[Collins and Richmond, 1994] Collins, J. and Richmond, S. (1994). Hard-wired
central pattern generators for quadrupedal locomotion. Biological Cybernet-
ics, 71:375–385.

[Collins and Stewart, 1993] Collins, J. J. and Stewart, I. N. (1993). Coupled
nonlinear oscillators and the symmetries of animal gaits. Journal of Nonlinear
Science, 3(1):349–392.

[Colombetti and Dorigo, 1992] Colombetti, M. and Dorigo, M. (1992). Learning
to control an auonomous robot by distributed genetic algorithms. In From
Animals to Animats 2, Proceedings of the 2nd International Conference on
the Simulation of Adaptive Behavior.

[Corwin et al., 1994] Corwin, E., Greni, S., Logar, A., and Whitehead, K.
(1994). A multi-stage neural network classifier. In Proceedings of World
congress on neural networks.

[Cyberbotics, 2005] Cyberbotics (2005). Webots refernce manual, release 5.0.1.

[Davis, 1996] Davis, I. (1996). A Modular Neural Network Approach to Au-
tonomous Navigation. PhD thesis, Robotics Institute, Carnegie Mellon Uni-
versity, Pittsburgh, PA.

[Dawkins, 1987] Dawkins, R. (1987). The blind watchmaker. Norton.

[Dawkins and Krebs, 1979] Dawkins, R. and Krebs, J. (1979). Arms races be-
tween and within species. In Proceedings of the Royal Society of London B,
volume 205, pages 489–511.

217



BIBLIOGRAPHY

[de Bollivier et al., 1991] de Bollivier, M., Gallinari, P., and Thiria, S. (1991).
Cooperation of neural nets for robust classification. In Proc. Internat. Joint
Conference on Neural Networks.

[De Jong et al., 2004] De Jong, E., Thierens, D., and Watson, R. (2004). Defin-
ing modularity, hierarchy, and repetition. In Proceedings of the GECCO
Workshop on Modularity, regularity and hierarchy in open-ended evolutionary
computation, pages 2–6.

[De Sa and Balard, 1998] De Sa, V. and Balard, D. (1998). Category learning
through multi-modality sensing. Neural computation, 10(5):1097–1117.

[Dewey, 1896] Dewey, J. (1896). The reflex arc concept in psychology. Psych.
Rev., 3:357–370.

[Di Ferdinando and Parisi, 2000] Di Ferdinando, A. Calabretta, R. and Parisi,
D. (2000). Evolving modular architectures for neural networks. In Proceed-
ings of the sixth Neural Computation and Psychology Workshop: Evolution,
Learning and Development.

[Doncieux and Meyer, 2004] Doncieux, S. and Meyer, J.-A. (2004). Evolution
of neurocontrollers for complex systems: alternatives to the incremental ap-
proach. In Proceedings of The International Conference on Artificial Intelli-
gence and Applications.

[Dorigo, 1995] Dorigo, M. (1995). Alecsys and the autonomouse: Learning
to control a real robot by distributed classifier systems. Machine learning,
19(3):209–240.

[Dorigo and Colombetti, 1998] Dorigo, M. and Colombetti, M. (1998). Robot
shaping: an experiment in behavior engineering. The MIT Press.

[Dorigo et al., 2004] Dorigo, M., Trianni, V., Sahin, E., Gro, R., Labella, T. H.,
Baldassarre, G., Nolfi, S., Deneubourg, J.-L., Mondada, F., Floreano, D., and
Gambardella, L. M. (2004). Evolving self-organizing behaviors for a swarm-
bot. Autonomous Robots, 17(2–3):223–245.

[Elman, 1991] Elman, J. (1991). Incremental learning, or the importance of
starting small. In Proceedings of the 13th Annual Conference of the Cognitive
Science Society, pages 443–448.

[Filliat et al., 1999] Filliat, D., Kodjabachian, J., and a. Meyer, J. (1999). In-
cremental evolution of neural controllers for navigation in a 6 legged robot. In
Proc. of the Fourth International Symposium on Artificial Life and Robotics,
pages 745–750. Univ. Press.

[Floreano and Mondada, 1994] Floreano, D. and Mondada, F. (1994). Auto-
matic creation of an autonomous agent: Genetic evolution of a neural network
driven robot. In From Animals to Animats III. MA: MIT Press.

218



BIBLIOGRAPHY

[Floreano and Mondada, 1996] Floreano, D. and Mondada, F. (1996). Evolu-
tion of homing navigation in a real mobile robot. IEEE Transactions on
Systems, Man, and Cybernetics-Part B, 26:396–407.

[Floreano et al., 2001] Floreano, D., Nolfi, S., and Mondada, F. (2001). Co-
evolution and ontogenic change in competing robots. In Patel, M., Hanover,
V., and Balakrishnan, K., editors, Advances in the evolutionary synthesis of
intelligent agents. MIT Press.

[Fodor, 1983] Fodor, J. (1983). The modularity of mind. Cambridge, MA: MIT
Press.

[Fodor, 2000] Fodor, J. (2000). The mind doesn’t work that way: the scope and
limits of computational psychology. MIT Press.

[Fujita, 2001] Fujita, M. (2001). Aibo: Toward the era of digital creatures. The
International Journal of Robotics Research, 20:781–794.

[Fujita and Kitano, 1998] Fujita, M. and Kitano, H. (1998). Development of an
autonomous quadruped robot for robot entertainment. Autonomous robots,
5(1):7–18.

[Funes and Pollack, 1999] Funes, P. and Pollack, J. (1999). Computer evolution
of buildable objects. In Evolutionary Design by Computers. Morgan Kauf-
mann.

[Gallagher et al., 1996] Gallagher, J. C., Beer, R. D., Espenschield, K. S., and
Quinn, R. D. (1996). Application of evolved locomotion controllers to a hexa-
pod robot. Robotics and Autonomous Systems, 19:95–103.

[Garibay et al., 2004] Garibay, I., Garibay, O., and Wu, A. (2004). Effects
of module encapsulation in repetitively modular genotypes on the search
space. In Proceedings of Genetic and Evolutionary Computation Conference
- GECCO 2004, volume 1, pages 1125–1137.

[Gatt, 1993] Gatt, E. (1993). On the role of stored internal state in the control
of autonomous mobile robots. AI Magazine, Spring:64–73.

[Geshwind and Galaburda, 1987] Geshwind, N. and Galaburda, A. (1987).
Cereberal lateralization: biological mechanisms, associations and pathology.
The MIT Press.

[Ghahramani, 1995] Ghahramani, Z. (1995). Computation and psychophysics
of sensorimotor integration. PhD thesis, M.I.T.

[Ghahramani, 2004] Ghahramani, Z. (2004). Advanced Lectures in Machine
Learning. Lecture Notes in Computer Science, volume 3176, chapter Unsu-
pervised Learning, pages 72–112. Springer-Verlag.

219



BIBLIOGRAPHY

[Ghahramani et al., 1997] Ghahramani, Z., Wolpert, D. M., and Jordan, M. I.
(1997). Computational models of sensorimotor integration. In Morasso, P. G.
and Sanguineti, V., editors, Self-Organization, Computational Maps and Mo-
tor Control, pages 117–147. Elsevier.

[Gomez and Miikkulainen, 1996] Gomez, F. and Miikkulainen, R. (1996). In-
cremental evolution of complex general behavior. Technical Report AI96-248,
University of Texas.

[Gomez and Schmidhuber, 2005] Gomez, F. and Schmidhuber, J. (2005). Co-
evolving recurrent neurons learn deep memory pomdps. In Proc. of the 2005
conference on genetic and evolutionary computation (GECCO).

[Graham and Oppacher, 2007] Graham, L. and Oppacher, F. (2007). A
multiple-function toy model of exaptation in a genetic algorithm. In IEEE
Congress on Evolutionary Computation.

[Grillner, 1985] Grillner, S. (1985). Neurobiological bases of rhythmic motor
acts in vertebrates. Science, 228:143–149.

[Gruau, 1994] Gruau, F. (1994). Neural Network Synthesis using Cellular En-
coding and the Genetic Algorithm. PhD thesis, Laboratoire de l’Informatique
du Parallilisme, Ecole Normale Supirieure de Lyon, France.

[Gruau, 1995] Gruau, F. (1995). Automatic definition of modular neural net-
works. Adaptive Behaviour, 3(2):151–183.

[Gruau, 1997] Gruau, F. (1997). Cellular encoding for interactive evolutionary
robotics. In Proceedings of the 4th european conference on artificial life.

[Gruau et al., 1996] Gruau, F., Whitley, D., and L.Pyeatt (1996). A comparison
between celular encoding and direct encoding for genetic neural networks. In
Genetic Programming 1996: Proceedings of the First Annual Conference. MA:
MIT Press.

[Gunderson and Gunderson, 2009] Gunderson, L. and Gunderson, J. (2009).
Robots, reasoning and reification. Springer.
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A
Simulator analysis

A.1 Aibo robot

The Aibo robot is a quadruped robot with dog shape developed by Sony. Aibo
has four legs with three degrees of freedom each. It can walk, recognize people
and voice and maintain its own agenda.

Aibo has sensor positions at each joint. It also has touch sensors on the
every foot that alow it to detect when it is touching the ground. Additionally,
it has a three axes accelerometer that allows it to detects its position.

What is interesting about this robot are two things:
first, it has a high complexity level, in terms of number of sensors and actu-

ators. Most of the behaviors evolved required the coordination of more than 30
devices.

Second, it can be programmed by the user, even if using a complex API.
Because of all that, it is an interesting platform where to test the DAIR

architecture. However, performing test directly into the Aibo robot is very
time consuming, and dangerous for the robot itself. To avoid those problems,
a simulator of the robot is preferred. Hence, experiments are performed in
the simulator, and once the results obtained are satisfactory, the results are
transfered to the real robot and tested on it.

A.2 Aibo simulator

To achieve a correct transfer from the simulator generated controller to the real
robot controller, the simulator must be accurate enough to guarantee that the
results obtained on it will be similar in the real robot. So, the selection of the
simulator has a great importance for the work performed in this thesis.

At the moment of starting this thesis, a simulation of the Aibo robot model
ERS-210 existed within the Webots simulator. However, the Aibo model used
in this thesis is the ERS-7. So, we modified the Webots simulator to include the
new ERS-7 simulation1. Those modifications can be found at current versions

1An initial 3D model of the ERS-7 was already made by Olivier Michel. Starting from that
rough model, we modified it, and adapted the control panel, and transference system, taking
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of the commercial simulator.
In order to tune the 3D model and tranference system for the ERS-7, we

performed a series of tests that characterize the simulation in all posible ways
that the robot can encounter. Next section describes the tests performed and
the results obtained.

A.3 Evaluation of the simulation acuracy

In this section we qualitatively and quantitatively evaluate the Aibo simulation
in Webots by comparing the simulation with the real Aibo while performing
various tasks. We implement measurements on the robot in static and dynamic
situations, and we compare performance between them. The comparison pro-
cedure is always the same: a Webots controller is created for the simulation.
This controller makes the robot perform an action that we want to measure.
The controller is then executed in the simulator and the measure taken. Next,
the controller is cross-compiled using Webots cross-compilation system, and ex-
ecuted on the real robot. Finally, the measure of the real robot is taken and
compared with the simulation result. The cross-compilation of the code ensures
that the same control program will be executed in both simulator and real robot,
and allows us to perform a fair comparison of performance between them.

A.3.1 Static measurement

The first comparison consists of measuring how the simulation differs from the
real robot when confronted to extreme static positions of the joints. In this
case, a Webots controller is created which slowly moves one of the leg joints to
the maximum or minimum of the joint range, starting from an initial natural
position. The controller is executed in the simulator and in the real robot, but in
both cases, only one joint is moved at the same time. Final positions reached by
simulator and real robot are recorded and compared visually and numerically.
The velocity at which joints are moved is very slow, so static states can be
assumed at any position of the joint.

Due to the fact that a single joint was moved at the same time, the robot
was required to slide over the ground. For this reason, the friction against
the ground was reduced to the minimum. In simulation this was achieved by
reducing the friction coefficient of the simulated ground. In real robot this was
achieved by placing some small sheets of paper under the paws of the robot.

The results of those tests can be seen in figure A.1. We observe that both
simulator and real robot achieve the same final position and, morever, the tra-
jectory described by both from the initial position to the final one, is practically
identical.

as point of departure the previous system developed for the ERS-210 by Lukas Holh.
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Figure A.1: List of pairs of static figures obtained in the simulator and the real
robot when moving a joint at a time. The first two pictures show the initial
position, and the resting pairs are the resultings of moving joints LeftFront J1,
J2, J3, and Left Hind J1, J2 and J3 respectively.
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Figure A.2: Trajectories obtained for the J1 joint at three different frequencies.
From left to right, oscillations at 0.25 Hz, 0.5 Hz and 1 Hz

A.3.2 Dynamic measurement

We carried out dynamic measurements, to analyze the difference between the
simulation and the real robot when they perform a movement. We will show
the results obtained from three different experiments, with an increasing degree
of complexity in the robot behavior. Experiments conducted consisted of the
characterization of the movement of one leg alone, the characterization of the
whole robot when performing a walking gait, and the characterization of the
whole robot when performing a walking gait and stopping at a specified distance
to an obstacle detected by the long distance sensor.

Movement of one leg

In this experiment, the three joints of a leg are moved following a sinusoid trajec-
tory. Trajectories obtained from the real and the simulated robot were obtained
and a measure of error calculated, comparing differences between the desired
trajectories and the ones obtained in both cases. For every joint three trajec-
tories where performed at three different frequencies of oscillation. The error is
calculated as the mean square error per period, normalised by the amplitude.

Figure A.2 shows the trajectories obtained for joint J1 at every testing fre-
quency, including the desired trajectory, the trajectory obtained by the sim-
ulated leg, and the trajectory of the real robot leg. Figure A.3 summarizes
the errors obtained between desired trajectory and actual trajectory, for the
simulator and the real robot for all types of joints.

From both figures we observe that the error obtained at these frequencies
is small. Nevertheless, error increases exponentially with the frequency of the
oscillation, and higher frequencies started to be difficult to follow for the joints,
especially for the real robot. At the same time, errors between simulation and
real robot also increased exponentially showing that at high frequencies the
simulator starts to differ more from the real robot. The two types of errors
present at higher frequencies are phase differences and attenuation of the shape
trajectory, i.e. typical tracking errors of PD controller. However, these are only
observed at frequencies far from the typical use for this robot and should not
affect much the simulation.
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Figure A.3: Error measures obtained for the three types of joints. Each figure
shows the error between the desired trajectory (Des), the simulator (Sim) and
the real robot (Real). From left to right, errors for joints J1, J2 and J3

Figure A.4: Walking sequence performed by simulator and real robot

Performing a walking gait

This section shows how similar the simulator and the real robot behave when
implementing a complex movement. Both the simulator and the real robot run
a Webots controler that executes an MTN file specifying a walking gait. Any
MTN file specifies the exact sequence of movements for each robot joint at any
time step in order to generate sequence of movements (in this case a walking
pattern). The walking gait obtained for the simulator and the real robot are
visually compared, joint trajectories are recorded and compared, and speed is
measured and compared.

The robot was placed on a parquet floor and its friction parameter introduced
on the simulator. The paws of the robot are made of rubber. Typical values for
a parquet floor friction against rubber are between 0.55 and 1.36 [ref]. A mean
value of 0.7 was selected. The robot executed then a sequence of five walking
steps, and the distance and time to accomplish those was measured.

First, a visual comparison of the walking was performed. Figure A.4 shows a
sequence of movements obtained in both systems. Walking gait was very similar
with no appreciable visual difference.

Second, the motor positions on each legs were also recorded for comparison.
Differences between the positions of the left fore leg in simulation and on the
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Figure A.5: Joint trajectories during walking for the left fore leg, in the simulator
and with the real robot

real robot can be seen in figure A.5. Trajectories are also very similar as the
visual inspection of the gait indicated, the only significant difference being the
value of the paw sensor. This is due to the fact that real paw is more noisy than
the simulated one and some contacts are not detected by it. Figure A.5 only
shows joints of one leg, but other legs behave in the same manner (including
paw sensor errors).

Finally, velocity in both systems was measured. Due to the chaotic nature
of the real robot, a statistical measurement was required to obtain its velocity.
A mean value was calculated out of ten runs. For the simulator no statistical
measurement was required since no noise was introduced in the simulation and
the results could then be repeated all the times with the same final value.
Nevertheless, due to small variations in some variables, it was noted that the
final distance was not exactly the same in different rounds, but the difference
was so small that it was discarded. This difference may indicate the presence
of chaotic behavior in the simulator that may affect more complex setups, and
may come from the accumulation of numerical errors due to loss of precision.

The measurements of the velocities showed a velocity of 3.50 cm/s for the
simulator, and a mean velocity value of 3.25 cm/s for the real robot with a
variance of 0.0261.

The results in this section show again that small differences between the
simulator and the real robot can be observed, but none of them really significant.

Walking up to a distance

This experiment measures the difference between the simulator and the real
robot when the whole robot is put into test, ina behavioral task involving move-
ments and sensor readings.

In this case, Aibo is requested to start walking from an initial position in
the same way as in the previous experiment, but to stop after it detects any
obstacle at less than 40 cms. Obstacle detection is performed by using the Far
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Figure A.6: Simulator and real robot setup for distance measurement

distance sensor situated in the head of the robot. The mechanism is the same
as in previous sections: a webots controller is created and executed in both the
simulator and the real robot (cross-compiled), and the differences between both
measured. In this case, we compare the distance at which the robot stopped
from the obstacle, but also all the measures taken by the distance sensor during
the walking period. The measures of distance taken during walking are obtained
from the far distance sensor of the robot, which directly provides a value of the
distance in milimeters.

Since there exist sensor errors in both simulated and real robot (simulated
sensors are modeled with noise), a unique and absolute measure of the distance
cannot be used for stopping the robot. Because of that, a hysteresis mechanism
was implemented, consisting of stopping the robot only after a distance below
40 cm has been detected for ten consecutive time steps of 96 ms. The final
distance and the trajectories were measured ten times in each type of robot.

The experiments showed that the simulated robot stopped at a mean dis-
tance of 33.6 cm of the obstacle with a variance of 0.22 cm, meanwhile the real
robot stopped at a mean distance of 32.72 cm of the obstacle with a variance
of 15.67 cm. Eventhough the mean distances at which both robots stopped are
very similar, the variance values among them are very different. The simulated
robot has a very small variance, only due to the noise of the distance sensor. On
the other side, the real robot has a very large variance due to several factors not
included in the simulation: first the distance measure method is far from exact
in the real robot (it is a manually done). Second, all the joints have their own
noise that affect the final position of the robot head, amplifying the difference
in the distance measured. Third, the movements on the head of the robot can
produce reflections of the infrared ray, producing even more measure differences.

All these differences can be seen in the figure A.7. In that figure, the mean
distance measured value obtained at each time step is presented, together with
the standard deviation at some randomly selected points. It can be seen that
while the simulator presents a clean line, the real robot has a more noisy line
showing the high variance detected in the measurements.
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Figure A.7: Mean distance value to an obstacle for the simulator (left) and
the real robot (right), obtained during the walking of the robot towards the
obstacle. Mean value is represented by thick black line. Vertical lines represent
the standard deviation of the measure at those points
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B
Connection with simulator

B.1 How to interface the evolutionary algorithm with

the simulator for offline evolution

The offline evolutionary proces is performed as follows:
In order to run a simulation, we need to create the simulation environment.

This is the 3D representation of the robot, its environment, and all the physical
things that are required to participate in the simulation. Then, we have to
write two programs which will run at the same time within the simulator: the
supervisor and the controller. The task of the supervisor is to implement the
evolutionary process, as it is specified by the given evolutionary algorithm (in
our case, the ESP). The controller, instead, executes a given phenotype in the
simulator and calculates the reward for its associated genotype. A schematics
of how do they interact can be found in figure B.1.

Once the simulation starts, both programs will run at the same time in dif-
ferent threads. The controller will just initialize the robot and remain on a
waiting state, waiting for a phenotype to execute on the robot. This phenotype
will have to be provided by the supervisor. Since the programs run in differ-
ent threads, the communication between supervisor and controller is performed
through a communication channel specified in the simulation.

The supervisor on its side will start by initializing the genetic algorithm. It
initializes its parameters and creates the first random generation of genotypes.
Then it goes to the selection and testing of all the genotypes, as was specified in
chapter 2. It selects the first genotype to test, converts it to a phenotype (that
is, to a neural controller) and sends it to the controller program. At this point,
the supervisor will wait until an answer from the controller is produced.

The controller program receives the neural controller and executes it on the
robot. This means that the neural controller will receive as inputs the what the
robot is sensing on its current situation, and will send to the effectors of the
robots the outputs generated by the neural controller. This execution of the
neural controller will last for a given amount of time (the time of evaluation)
which has been specified before hand. So, during this time, the robot in the
simulation will behave on the way indicated by the neural controller. After the
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THE SIMULATOR FOR OFFLINE EVOLUTION

Figure B.1: Schematics of the interface of the evolutionary algorithm with the
simulator

time is consumed, the robot will stop, and a measurement of the behavior of the
robot will be taken, that is, a fitness measurement which indicates how good
or bad the robot behaved. The fitness is then sent to the supervisor as the
requested answer.

Once the supervisor receives the fitness for that genotype, it stores that
information and selects a new genotype to be tested. The process is then re-
peated. The genotype is converted to phenotype, and sent to the controller
until a response with the fitness is obtained. Once all the genotypes have been
tested, they are ordered and a new generation of genotypes is obtained as the
evolutionary algorithm specifies. The whole process is then repeated for that
new generation. This process will repeat over and over until the number of
maximum generations is reached, and the final controller is obtained.
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C
Chapter 4 results

C.1 Experiment results of the contour following be-

havior

This sections contains the evolution of the fitness for all the seven runs performed
for the evolution of each type of controller of section 4.2.6.

C.1.1 Monolithic controller
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C.1. EXPERIMENT RESULTS OF THE CONTOUR FOLLOWING

BEHAVIOR

C.1.2 Tactical controller
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BEHAVIOR
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BEHAVIOR

C.1.3 Tactical controller without sensor IHUs
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C.2. EXPERIMENT RESULTS WITH AN AIBO ROBOT

C.2 Experiment results with an Aibo robot

C.2.1 Keep stand up tactical controller
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C.2.2 Stand up tactical controller
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D
Chapter 5 results

D.1 Experiment results for the different architec-

tures solving the garbage collector

This sections contains the evolution of the fitness for all the ten runs performed
for the evolution of each type of controller of chapter 5.

D.1.0.1 Monolithic controller

Main evolutionary process
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D.1. EXPERIMENT RESULTS FOR THE DIFFERENT

ARCHITECTURES SOLVING THE GARBAGE COLLECTOR

Extra experiment results
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ARCHITECTURES SOLVING THE GARBAGE COLLECTOR
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D.1. EXPERIMENT RESULTS FOR THE DIFFERENT

ARCHITECTURES SOLVING THE GARBAGE COLLECTOR

D.1.0.2 Tactical controller

Main evolutionary process
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D.1. EXPERIMENT RESULTS FOR THE DIFFERENT

ARCHITECTURES SOLVING THE GARBAGE COLLECTOR

Extra experiment results
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D.1. EXPERIMENT RESULTS FOR THE DIFFERENT

ARCHITECTURES SOLVING THE GARBAGE COLLECTOR

D.1.0.3 Tactical controller without sensor IHUs

Main evolutionary process
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ARCHITECTURES SOLVING THE GARBAGE COLLECTOR

Extra experiment results
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ARCHITECTURES SOLVING THE GARBAGE COLLECTOR
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ARCHITECTURES SOLVING THE GARBAGE COLLECTOR

D.1.0.4 Strategic controller

Main evolutionary process

259



D.1. EXPERIMENT RESULTS FOR THE DIFFERENT

ARCHITECTURES SOLVING THE GARBAGE COLLECTOR

Extra experiment results

260



D.1. EXPERIMENT RESULTS FOR THE DIFFERENT

ARCHITECTURES SOLVING THE GARBAGE COLLECTOR
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ARCHITECTURES SOLVING THE GARBAGE COLLECTOR

D.1.0.5 Strategic and tactical controller

Picking the stick
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ARCHITECTURES SOLVING THE GARBAGE COLLECTOR

Releasing the stick
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D.1. EXPERIMENT RESULTS FOR THE DIFFERENT

ARCHITECTURES SOLVING THE GARBAGE COLLECTOR

D.1.0.6 Emergent modular controller

Main evolutionary process
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D.1. EXPERIMENT RESULTS FOR THE DIFFERENT

ARCHITECTURES SOLVING THE GARBAGE COLLECTOR

Extra experiment results
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ARCHITECTURES SOLVING THE GARBAGE COLLECTOR
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D.2. EXPERIMENT RESULTS FOR THE DIFFERENT

ARCHITECTURES IN THE AIBO STAND UP TEST

D.2 Experiment results for the different architec-

tures in the Aibo stand up test

D.2.0.7 Monolithic controller
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ARCHITECTURES IN THE AIBO STAND UP TEST
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D.2. EXPERIMENT RESULTS FOR THE DIFFERENT

ARCHITECTURES IN THE AIBO STAND UP TEST

D.2.0.8 Tactical controller
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ARCHITECTURES IN THE AIBO STAND UP TEST

270



D.2. EXPERIMENT RESULTS FOR THE DIFFERENT

ARCHITECTURES IN THE AIBO STAND UP TEST

D.2.0.9 Emergent modular controller
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ARCHITECTURES IN THE AIBO STAND UP TEST
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E
Chapter 6 results

E.1 Experiment results for the progressive design ex-

periments

This sections contains the evolution of the fitness for all the ten runs performed
for the evolution of each type of controller of chapter 6.

E.1.1 The Aibo walking controller

E.1.1.1 Progressive design first stage (J1 joint)
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EXPERIMENTS

E.1.1.2 Progressive design first stage (J2 joint)
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EXPERIMENTS
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E.1. EXPERIMENT RESULTS FOR THE PROGRESSIVE DESIGN

EXPERIMENTS

E.1.1.3 Progressive design first stage (J3 joint)
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E.1. EXPERIMENT RESULTS FOR THE PROGRESSIVE DESIGN

EXPERIMENTS

E.1.1.4 Progressive design second stage (J1 joints)

277



E.1. EXPERIMENT RESULTS FOR THE PROGRESSIVE DESIGN

EXPERIMENTS

E.1.1.5 Progressive design second stage (J2 joints)
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E.1. EXPERIMENT RESULTS FOR THE PROGRESSIVE DESIGN

EXPERIMENTS

E.1.1.6 Progressive design second stage (J3 joints)
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E.1. EXPERIMENT RESULTS FOR THE PROGRESSIVE DESIGN

EXPERIMENTS

E.1.1.7 Progressive design third stage (J1 joints)
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E.1. EXPERIMENT RESULTS FOR THE PROGRESSIVE DESIGN

EXPERIMENTS

E.1.1.8 Progressive design third stage (J2 joints)
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E.1. EXPERIMENT RESULTS FOR THE PROGRESSIVE DESIGN

EXPERIMENTS

E.1.1.9 Progressive design third stage (J3 joints)
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F
Chapter 8 results

F.1 Frequency analysis of the garbage collector DAIR

controller internal states

This sections contains the plots of the internal state signals generated by the
DAIR garbage collector controller, for its analysis of chapter 8. It includes the
frequency plots. Only the non-tonic states are plotted.

283



F.1. FREQUENCY ANALYSIS OF THE GARBAGE COLLECTOR DAIR

CONTROLLER INTERNAL STATES

Figure F.1: Frequency plot of sensor IHUs in situation 5a. From left to right,
top to down, sensor SA, SB, SC , SD, SE , SF , SG.
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F.1. FREQUENCY ANALYSIS OF THE GARBAGE COLLECTOR DAIR

CONTROLLER INTERNAL STATES

Figure F.2: Frequency plot of actuator IHUs in situation 5a. From left to right,
top to down, sensor ML, MR, PT , PR.
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F.1. FREQUENCY ANALYSIS OF THE GARBAGE COLLECTOR DAIR

CONTROLLER INTERNAL STATES

Figure F.3: Frequency plot of sensor IHUs in situation 5b. From left to right,
top to down, sensor SA, SB, SC , SD, SE , SF , SG.
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F.1. FREQUENCY ANALYSIS OF THE GARBAGE COLLECTOR DAIR

CONTROLLER INTERNAL STATES

Figure F.4: Frequency plot of actuator IHUs in situation 5b. From left to right,
top to down, sensor ML, MR, PT , PR.
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F.1. FREQUENCY ANALYSIS OF THE GARBAGE COLLECTOR DAIR

CONTROLLER INTERNAL STATES

Figure F.5: Frequency plot of sensor IHUs in situation 6a. From left to right,
top to down, sensor SA, SB, SC , SD, SE , SF , SG.
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F.1. FREQUENCY ANALYSIS OF THE GARBAGE COLLECTOR DAIR

CONTROLLER INTERNAL STATES

Figure F.6: Frequency plot of actuator IHUs in situation 6a. From left to right,
top to down, sensor ML, MR, PT , PR.
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F.1. FREQUENCY ANALYSIS OF THE GARBAGE COLLECTOR DAIR

CONTROLLER INTERNAL STATES

Figure F.7: Frequency plot of sensor IHUs in situation 11a. From left to right,
top to down, sensor SA, SB, SC , SD, SE , SF , SG.
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F.1. FREQUENCY ANALYSIS OF THE GARBAGE COLLECTOR DAIR

CONTROLLER INTERNAL STATES

Figure F.8: Frequency plot of actuator IHUs in situation 11a. From left to right,
top to down, sensor ML, MR, PT , PR.
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F.1. FREQUENCY ANALYSIS OF THE GARBAGE COLLECTOR DAIR

CONTROLLER INTERNAL STATES

Figure F.9: Frequency plot of sensor IHUs in situation 11b. From left to right,
top to down, sensor SA, SB, SC , SD, SE , SF , SG.
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F.1. FREQUENCY ANALYSIS OF THE GARBAGE COLLECTOR DAIR

CONTROLLER INTERNAL STATES

Figure F.10: Frequency plot of actuator IHUs in situation 11b. From left to
right, top to down, sensor ML, MR, PT , PR.
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F.1. FREQUENCY ANALYSIS OF THE GARBAGE COLLECTOR DAIR

CONTROLLER INTERNAL STATES

Figure F.11: Frequency plot of sensor IHUs in situation 12a. From left to right,
top to down, sensor SA, SB, SC , SD, SE , SF , SG.
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F.1. FREQUENCY ANALYSIS OF THE GARBAGE COLLECTOR DAIR

CONTROLLER INTERNAL STATES

Figure F.12: Frequency plot of actuator IHUs in situation 12a. From left to
right, top to down, sensor ML, MR, PT , PR.
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F.1. FREQUENCY ANALYSIS OF THE GARBAGE COLLECTOR DAIR

CONTROLLER INTERNAL STATES

Figure F.13: Frequency plot of sensor IHUs in situation 12b. From left to right,
top to down, sensor SA, SB, SC , SD, SE , SF , SG.
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F.1. FREQUENCY ANALYSIS OF THE GARBAGE COLLECTOR DAIR

CONTROLLER INTERNAL STATES

Figure F.14: Frequency plot of actuator IHUs in situation 12b. From left to
right, top to down, sensor ML, MR, PT , PR.
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