
Synchronous and
asynchronous modes on

dynamic control
Ricardo A. Téllez, Diego Pardo and Cecilio Angulo

Technical University of Catalonia, Spain

Outline

• Description of the task

• Implementation in real Aibo using libUrbi

• Synchronous implementation

• Asynchronous implementation

• Future work and conclusions

Description of the task

Main Goal
• Make real Aibo walk using distributed neural nets

• First step: evolve the nets using a simulator

• Second step: transfer simulator results to real
robot using libUrbi

Neural control

• Continual Time Recurrent
Neural Nets used

• One net per sensor and
actuator (24)

• Actuators’ net output encodes
joint velocity at any time-step

Robot control loop

• The main control loop:

• read sensors

• process neural nets (generate outputs)

• send velocity commands to motors

• wait 96 ms and repeat loop

Simulation results

• Neural net connections
generated using
evolutionary algorithm

• Evolutionary process
made on incremental
stages

Simulation results

Implementation on real
Aibo using libUrbi

Synchronous approach

• Each time a sensor value is required, a call
for the sensor value has to be performed.

• The value returned is (in theory) the
present value of the sensor

• Very easy to use and understand

 Travolta->syncGetDevice(JOINT_MOTORS[i],sensorValue);

Problems of this approach
• The mechanism for retrieving a value is slow and unstable

(measured times of reception between 0.5 and 100 milliseconds)

Computer Aibo

Urbi server
OVirtual

RobotComm

syncGetDevice
.
.
.
.
.
receives value

waits for value
from Aibo’s
virtual object
.
.
. sensors

actuators

Problems of this approach
• The syncGetDevice is not optimized (yet!)

• A message has to be created for each value
(in our case,12 messages required)

• Some time required between consecutive
messages for correct reception of value

for (int i=0; i<NUM_SENSORS; i++)

 {

 Travolta->syncGetDevice(JOINT_MOTORS[i],sensorValue);

 sensors[i] = sensorValue;

 usleep (7000);

 }

Synchronous results

Synchronous results
• No coordination achieved

Asynchronous approach
• Use of callback functions

• At every time that the Urbi server has a
sensor value, it sends the value to the client,
activating the callback

• A message received every few miliseconds
(measured)

 neuronal.Travolta->setCallback(onJointValue,JOINT_MOTORS[i]);

Asynchronous approach
• The callback stores locally the values

received from the server
UCallbackAction onJointValue(const UMessage &msg)
{

 for (int i=0;i<NUM_JOINTS;i++)

 {

 if (!strcmp(msg.tag,JOINT_MOTORS[i]))

 {

 JointLastValue[i]= msg.doubleValue;

 return URBI_CONTINUE;

 }

 }

 cout << "error: no device " << msg.tag << endl;

 return URBI_CONTINUE;
}

Asynchronous approach

• Each time the neural controller needs a
sensor values, just takes the last value stored

• No waiting times for sensor values!

• Now the important delay is the one in
sending commands from the client to the
joint (but a lot smaller than the sensor delay)

Asynchronous results
• Better coordination achieved

Asynchronous results

Asynchronous results

Future work and
conclusions

Onboard implementation
• To implement the neural controller directly

on the Aibo processor using libOPENR

• Better results expected, like in cross-
compilation from Webots to OPENR

Conclusions
• Urbi provides two different ways of interaction

with the robot sensors

• Synchronous mode is not good for highly
dynamic control processes but is easier to use

• Asynchronous allows for quick sensor updates
but requires the use of callbacks

• Direct implementation onboard may be even
more adequate for highly reactive tasks

More information

QUESTIONS?

Urbi code of this presentation available at:

www.ouroboros.org

