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Current challenges in humanoid navigation in
dynamic environments

Ricardo Tellez and Luca Marchionni

Figure 1. ADNEC exhibition center in Abu-Dhabi during IDEX exhibition
in 2011. Size of the place is about 80.000 squared meters. It includes different
types of floors, carpets and different flows of people at the same time.

Abstract—This paper describes current limitations of hu-
manoid navigation systems in real human environments for all the
parts of a navigation system: mapping, localization, path planning
and obstacle avoidance. The identification of those problems
comes from our experience in the deployment of the Reem series
of humanoid robots in exhibition centers and shopping malls. A
list of the latests solutions to those problems is also provided,
even if they are partial and no holistic solution solves all the
issues yet.

I. INTRODUCTION

The ultimate goal of humanoid robot navigation is to make
the robot move by itself (navigate) on a human environment,
without any human intervention, and for a long period of time.
By human environment we understand a place where humans
move around, each one engaged in their own activities. The
robot may or may not interact with people, but they will be
moving around the environment, altering the environment, and
performing actions that will prevent the robot from accom-
plishing its mission (like for example standing on the robot
way).

In order to navigate, a robot has to create a map of the
environment, be able to locate itself on the map, and plan
safe trajectories on it. It also has to be able to avoid obstacles
on its way to the goal as they appear. There exists a lot of
different navigation techniques to accomplish these goals, but
when those techniques are deployed on a real robot on a
real human environment they have multiple limitations. The
reason is that human environments are not static and simple
environments. Instead, they are highly dynamic, they contain
multiple exceptions to the main setup, are large and include
people in their environment (see figure 1).

Some attempts of robot navigation in human environments
have already been made with non humanoid robots in muse-
ums [1], exhibitions [2], shopping malls [3] or hospitals [4]
but the degree of autonomy is far from the level desired. In
all those cases, human supervision was required on a regular

basis, either to remove special obstacles from the robot way,
or to re-localize it. Humanoid navigation (biped and wheeled)
in static environments has been shown in some works [5], [6],
[7], [8], [9], [10], but none of them attempted a deployment
on a real human environment.

Using human size humanoid robots makes it even more
complicated because the robots are big, have special shapes
that can collide with objects in a lot of different ways,
can crash against people and harm them, and the human
expectations over them are greater.

Based on our experience deploying Reem-B biped hu-
manoid robot [11] in office environments, and Reem-H and
REEM wheeled humanoid robots into different human setups
like shopping malls and exhibition centers, we have identified
the current major problems that prevent the use of humanoid
robots in human environments, from the point of view of
navigation systems. This paper describes those problems in
each of navigation areas, including current approaches to
partially solve them. The paper ends with the conclusions and
future work section.

II. PROBLEMS IN MAP CREATION

Mapping is the ability the robot has to create a representa-
tion or model of the environment that will later be useful for it
in order to know where it is located and where does it have to
go. The typical use of SLAM algorithms for mapping works
as follows: there is an initial mapping phase where usually a
human operator moves the robot around the environment and
creates the map with it. Then this map is frozen and used for
both localization and path planning, usually assuming that the
world will remain unchanged.

This approach to map creation (and later use) introduces the
following problems:

A. The autonomous creation of the map

The typical way to create a map is to provide the robot
with a range sensor and an odometry system. Then, while
the human moves the robot around the environment a SLAM
algorithm processes the sensor readings to generate a map.
Hence, map creation is the first moment in the robot deploy-
ment process where human assistance is needed.

Even if this human intervention can be considered as part
of the setup process, when the environment is large (more
than 10.000 m2), this process is very annoying for humans,
specially when extra information has to be incorporated in the
map as it is been built (like capturing images at specific places
or recovering RFID information; all those tasks may require to
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Figure 2. Automatic loop closure failed in the left-upper part of the map (size
of the loop 50x10m). At the same time, debris due to ephemeral obstacles
can be observed in the main corridor.

stop the robot making the whole mapping process a lot more
exhausting).

In order to solve this problem autonomous exploration
techniques can be used to allow the robot do the map by
itself [12], [13]. Those techniques are mainly concerned about
distinguishing which areas the robot has to visit next, and
which ones are not necessary.

From an automatic mapping process, one would expect not
to have to manually modify the map once it has been created
by the robot. However, manual modification of the map may
be required in some situations where the final map includes
errors.

Errors in map creation can be due to several things. One
example is failing to close a loop. In this situation, the
automatic loop closure algorithm can fail closing it, and the
result is a map with overlapping zones (see figure 2).

Another error in map creation can be due to ephemeral
objects [14]. Those are objects that are in the environment
during map creation (hence they will be included in the
map) but they will not be in the environment during normal
operation of the robot. Those objects include people moving
around the robot while mapping, garbage, or doors that are
closed when the robot moves (see debris in figure 2).

The effect of moving people can be solved in most of
the cases, solutions range from using probabilistic filters to
identify dynamic measurements [15], [16], or by tracking
the moving objects [17], [18], [19]. The problem of people
standing without moving has the same effect as stuff put in
the place for a moment (like for example a suit case). This
problem is due to the existence of static temporal obstacles,
those are, obstacles that stay on a position of the environment
long enough to be considered as part of the environment, when
actually they are not.

The problem of introducing static temporal obstacles on a

map is not solved yet. A practical solution to avoid them is to
create the map when nobody is there paying special attention
to the environment been clean, but this is not always possible
to do. Hence, a better automatic solution may be required for
this problem. In the next section, solutions for mapping over
long periods are described. Those solutions can in some sense
solve the problem of static temporal objects.

Summarizing, at present, the existence of the described
problems requires a person to check the map automatically
created by the robot and modify it accordingly.

B. The maintenance of a map over long periods of time
Maps change with time. People add new stuff to the

environment, move stuff from one place to another, or just
remove it. Sometimes, they change partially or completely
the setup, like for example in exhibition centers, where every
exhibition has its own layout. If the robot has to run by itself
for long periods of time without requiring new setups from
humans after the initial deployment, it must be able to detect
those changes and re-arrange the map, either by modifying the
current one or by creating a new one. This process is called
long term mapping or life long mapping.

Just a few works have dealt with this problem:
The work of [20] introduces a method to maintain a map

over time by representing the environment over multiple
timescales simultaneously. By using this method, the authors
are able to track both stationary and non-stationary elements
of the environment. Their method allowed them to maintain
the maps over several weeks.

In [21] the authors deal with the problem of changes in the
long time, like for example places with doors or sofas been
moved, or panels that change position. Proposed a solution to
based on constructing sub-maps for each area where those and
other dynamic aspects were observed. For example, the robot
is able to detect the door as a dynamic obstacle by observing
it in different configurations at different times. This technique
can be used to remove static temporal obstacles of a map.

In [14] dealt with the problem of maintaining a limited
amount of resources along the life of the robot in dynamic
environments, by keeping reduced the size of the pose-graph.
Since the number of observations increases with the time
that the robot is running, it is a common problem to decide
which observations to store and which ones don’t, in order
to maintain a limited amount of resources. This work only
maintains those measures that present a gain in the expected
information. Additionally, their approach improves from the
previous ones in the sense that it can update the map after a
localization failure, or when new large sections of a map have
to be incorporated or changed.

All those approaches have demonstrated to work, but it is
difficult to assert how they would work when used in the
presence of a crowd (like in a shopping mall or an exhibition
center) or in large environments (for instance, [14] work was
demonstrated for only 2500 squared meters).

C. The mapping of large environments
Another problem of current mapping systems is the mapping

of large indoor environments over which the robot will have to
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localize and generate path plans. We describe as large environ-
ments, environments of 10.000 square meters or more. Even if
the standard SLAM approach of mapping such environments
may work [22], [23], they become extremely inefficient when
the map grows in size, specially when combined with other
navigation requirements, like path planning, initial localization
or visual localization. Additionally, the problem of closing
loops becomes more complex due to the necessity of main-
taining a larger number of hypothesis for loop closure.

The problem of large cyclic environments was discussed
in [24]. In [25] the problem of closing loops is minimized by
introducing the use of a Pose-SLAM method which only keeps
non redundant poses and highly informative links. In [26] their
system is able to close different nested loops along more than
2 km, by using a graph that encodes local frames (local sub-
maps) with a transformation between adjacent frames (that is,
between adjacent sub-maps).

Several works are exploring the same idea of constructing
sub-maps that are connected in some way between each other
(with different types of constrains), in order to generate a large
map. For instance, [27] present a hierarchical method based
on two levels, local and global, with an estimation of the
relative locations between local maps. The authors also provide
a method for closing large loops, but the whole system has
only been tested in environments up to 10.000 square meters.
Similar works are those of [28], [29].

Recently [30] have developed hybrid topological-metric ap-
proach maps based also in sub-maps that are continuously been
updated. This continuous update helps to introduce changes in
the map, like stuff that is removed, removal of static temporal
objects, etc. The approach seems very promising for achieving
life long mapping, even if the authors do not provide the size
of maps they have constructed.

III. LOCALIZATION PROBLEMS

Localization is the ability to determine in which point of
the map the robot is. Usually the robot captures data from the
environment using a scan sensor (camera, laser, sonar, etc)
and matches that data with the map it has constructed in the
previous stage. Localization in static small environments has
already been demonstrated for biped humanoids with several
degrees of success [6], [8], [9], [10].

We observe the following problems when the environment
is large and is populated with people:

A. The problem of initial localization

When the environment is crowded, an autonomous initial
localization may be very difficult if not impossible. The initial
localization problem is a simpler version of the kidnapping
problem. There are several solutions to provide an initial
localization [31], [32], [33] but they fail when the environment
is crowded because the pose is not able to converge to the
correct location. Due to wrong measurements related to the
presence of people, the current observations of the robot do
not match any place in the map (the robot doesn’t localize),
or even worst, match a place that is not the real one (the robot

Figure 3. Four different images obtained by REEM robot at IDEX exhibition
(its head in normal operation position). It can be observed that a large amount
of visual localization information can be obtained by paying attention to the
signs at the upper part of the images, which is almost never occluded.

localizes in the wrong place). In those cases, only a manual
set by the operators is the solution.

Other approaches like [34], [35] exploit natural features like
corners or walls to initialize the robot position, but they are
not taking into account occlusions.

In [36] they solve the problem of occlusion by using in-
distinguishable artificial landmarks at a certain height that are
difficult to be occluded by people. This implies a modification
of the environment where the robot has to work accordingly.
Additionally, the authors require other strong assumptions that
may not be valid in real environments, like for example the
number of visible landmarks that need to be provided to the
algorithm.

None of the previous solutions would work on a place like
the one depicted in figure 1 due to occlusions. From our
experience we think that to solve this problem we have to
base the initial localization in vision system, since they are
able to capture more and better information than any other
sensor. For example, figure 3 shows different images captured
by humanoid robot REEM robot on a big exhibition. One can
observe how a laser would be occluded in all those situations.
Instead, vision can perceive the environment, specially all the
upper part of the image that includes the signs of all the stands.
This approach has at least two advantages:

• The visual information provided by the upper part of the
images suffers less from dynamic obstacles occlusion.

• This approach doesn’t require a special robot shape to
accommodate special sensors in special configurations
(like cameras or lasers pointing to the ceiling). Just two
cameras mounted on its face in a human like configura-
tion.

In this line of research, is the work of [33], [37] who used
vision to identify natural landmarks. However, their work is
not prepared for crowded environments, since it focuses in
the whole image are which would be cluttered with people
on a crowded environment. Another idea is the use of place
recognition [38] even if the same problem of crowdedness is
there.
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The conclusion we draw from this section is that the
localization algorithms are mature enough for simple human
environments (they would work at home, for example), but
they aren’t robust enough for large and crowded environments.

B. The problem of maintaining localization in crowded envi-
ronments

In this section, we assume that the robot has already been
localized in some way, either using one of the approaches
of the previous section, either made in a manual way by an
operator.

Current localization systems are quite robust when the
environment is fixed and corresponds to the map created in
the previous stage. However, in real life, this is almost never
the case. In real cases, the robot is surrounded by people that
prevent the sensors match the map. At the same time they
provide wrong sensor measures that intoxicate the localization
algorithm. The usual solution is to filter this information and
provide only good sensor lectures to the localization algorithm
[1]. The problem is that, when the crowdedness ratio1 is large,
the number of good sensor data provided to the algorithm is
very small.

There exists almost no works that address this problem.
The only works that address this problem are the early works
of [39] with their museum robot. Their solution was to use
a camera pointing to the ceiling. All proposals that have
a good enough behavior in crowded environments use the
ceiling approach [40]. But this ceiling approach includes some
restrictions on the shape of the humanoid robot in order to
accommodate those cameras. Additionally, it may not work
on places where the ceiling is very high, like the ones in the
exhibition centers, shopping malls, train stations or airports,
which usually range from 15 meters or have no ceiling at all.

Given that in this situation the robot starts from an al-
ready localized status, some works plan specific trajectories
in order to maximize localization accuracy (that is, minimize
localization error). For instance, [41] use a belief map built
during map creation to plan trajectories that avoid places
where the robot had a greater uncertainty on its localization.
[42] generate paths to goals in a similar way, moving the
robot through locations that the robot predicts to have less
localization uncertainty.

Those approaches are based on the idea that landmarks
required for localization will easily be retrieved once the
robot path has been properly estimated through a minimum
localization error path [43]. Even if this idea is original and
may work in complex static places, still has to be demonstrated
to work in dynamic environments where crowds never behave
the same way. This means that estimations based on measures
at a different time may not work at current time.

Recently some improvement on the localization ratio can
be observed with the use of feasibility grids [44]. In this case,
the authors create a model of the sensor for both stationary
and moving objects and used them to create a feasibility map

1We call the crowdedness ratio, the ratio between the number laser rays that
impact on non-expected obstacles and the total number of rays. This value is
always a number between zero and one.

Figure 4. Different types of objects that we have encountered in the
deployment of our robots Reem-H and REEM, that are difficult to detected
(a small table, the foot of a light projector and a white board).

to be used in situations of crowded localization. Comparison
against other methods like filtering is provided and show that
feasibility grids are a better option for localization in crowded
environments, even if no information is provided about the
amount of people that is in the environment (no measure of
crowdedness).

Additional solutions include the use of external devices that
provide some kind of localization signal to the robot, like
special marks on the environment (either visual or electro-
magnetic) [45], [46], [47], install additional beacons [48], or
use indoor wifi localization systems [49]. All of them require a
modification of the environment where the robot is deployed,
as well as modify the robot itself to incorporate additional
sensors. This solution makes the installation of the robot more
complicated specially if the environment is large.

IV. PROBLEMS AVOIDING OBSTACLES

Once the robot is localized on a map, it has to move safely
in the environment. For a humanoid robot safe movement
is difficult due to its size, special shape (arms can move
outside the main body interfering with the sensors) and even
the special way of moving (balancing, moving arms along
the body, etc). Also, the obstacles one can find in human
environments are of very different ways, shapes, and materials
(see figure 4).

For humanoids, detecting obstacles is even more complex
than with mobile bases for several reasons. First, the sensors
need to be mounted on a reduced space while maintaining
a certain shape (human shape). This fact limits the type of
sensors that can be used and the number of them that can be
incorporated in the robot. Second, depending on where in the
robot the sensor is mounted, the noise associated to the sensor
measure can become very large. Every physical link between
parts of the robot in the path from the base of the robot to
the sensor position, introduces a certain position error. As the
number of links increase, so does the error associated to the
sensor. In [6] the HRP robot uses a laser on the mouth to
detect obstacles, but due to its imprecision, it is only used
for object recognition and not for obstacle detection. In [50]
a pivoting laser mounted on the humanoid hip is used to
detect obstacles. Due to the errors accumulated over time, the
memory of obstacles is deleted after every few steps.

So the main problems we devise in avoiding obstacles are
described in the following sections.
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A. Obstacle detection

Obstacle distance detection is the most important step of an
obstacle avoidance system. Distances to obstacles are obtained
using different methods and sensors. The fusion of all the
available sensors provides the robot with a description of the
obstacles in its surroundings. Then a planning can be applied
to avoid those obstacles.

Current approaches to obstacle detection are far from per-
fect: for instance, in [8] two lasers on the robot feet were used
to calculate the distances to obstacles. In [51] the PR2 robot
used a tilting laser close to the mouth to generate a cloud of
points to obstacles. Both approaches used lasers as their main
obstacle detection device, being the second approach more
complete because generates a 3D cloud of obstacles points.
However, laser sensors have their limitations in detecting
objects that one can found in a normal human environment
like glass doors and tables, mirrors or metallic stuff. And even
worst, when the laser is in front of mirrors or metallic parts,
the distances provided by the sensor are longer than the actual
ones (because of the reflexion effect).

Recently robots are being equipped with structured light
scanner devices that improve the number of obstacles that
can be detected by a single sensor, even if glass can not still
be detected by those devices. Hence, the current solution to
obstacle detection seems to have a combination of sensors
that allow in the whole the detection of the greatest number
of types of objects (laser, sonar, cameras, structured light
scanners). Again, this solution has its own problems; for
example, to include all those sensors on a humanoid robot
may be difficult. Also, many sensors on a single robot may
generate interferences between them (for example, sonars in
the back may interfere with sonars in the front), and even
worst, interfere with other robots.

B. Handle strange situations

If the robot has to move by its own for a long period of time
on a crowded environment, it will have to handle several non
common situations. From our experience we have identified
the following:

1) Robot collisions: It is almost impossible to devise before
hand all the types of objects and situations that a robot will
encounter during its operation on a human environment. This
means that, even if the robot is perfectly sensored to detect
obstacles, eventually the robot will collide with something.

The robot must be prepared for this situation in two ways:
first it has to be equipped with contact sensors like bumpers
or artificial skin to detect the impact. Second, because it is
impossible to include those sensors in the whole body of
the robot, software detectors of collision situations must be
incorporated in the robot. This software must be able to:
first identify possible collision situations in the future (predict
them), like in [52], and second, in case that everything failed
and the robot finally collided, determine that the robot has
collided based on its history and current behavior rather than
on the value of a sensor, like in [53].

2) Interference between robots: It may happen that several
robots have to work together in the same environment. In this
situation, robots can interfere each other’s sensors, producing
detection of non existing obstacles, or even worst, not detect-
ing obstacles that do exist in their paths.

Solutions to this problem may range from avoiding the use
of sensors that can be interfered (like sonars or lasers) or
minimize interference by partitioning the space using different
strategies, like in [54], [55].

V. PATH PLANNING PROBLEMS

In our experience we have found path planning in dynamic
environments the most mature of the navigation systems.
However, there are still some points where path planning can
be improved.

A. Planning in large environments

Finding paths using large maps can be very time consuming.
To avoid this problem, latest path planning techniques are
integrated with life long mapping algorithms. Most of the
mapping solutions presented in section II-C about mapping
large environments already deal with path planning in this
way. The typical solution is to have a master plan between
large zones of the map, that is update only once every time
the robot changes sub-map. Then local planning on each sub-
map is made in order to follow the master plan.

Care has to be taken when planning in special situations.
Those include the robot changing from one room to another
room or the robot turning a corner. In those cases, the robot
has no sensor data about what can expect after the door or the
corner. Hence a special plan is required. Examples of plans
for those situations can be found in [51].

B. People aware navigation

The classical approaches to robot planning assume again
the world as a static environment. Hence at every time step
the world is sensed and the position of obstacles updated.
Then a path is calculated based on both the map and the
obstacles. The result of this approach in dynamic environments
is a behavior of the robot that looks chaotic, because the
robot is continuously changing its path based on the flow of
people. To avoid this behavior, the path planner has to plan
being aware of the existence of different types of obstacles:
dynamic (basically, people) and static ones. This type of
path planning is called people aware planning [56]. Having
such type of planning would provide the robots with a more
fluent movements, and at the same time, more enjoyable and
predictable for humans.

People motion behavior prediction is used in [57], [58] to
adapt the path of the robot according to the activities of the
people. Other recent works negotiate paths in a general way,
independently if the moving obstacle is a person or something
else that moves (a pet, a bicycle, a car, etc...) [59]. The work
of [60] works on planning in dynamic large environments like
train stations or airports been aware of people position.

Recent work for path planning includes robot movement
on environments with deformable objects like curtains [61].
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In this case, or in similar cases where the space is filled with
deformable stuff, it may be interesting to notice that a collision
free path may be not possible, and allow a robot path that
collides under a specific contact threshold [62].

C. Taking profit of humanoid shape

Most of the path planning algorithms used in humanoid
navigation assume the dimensions of the robot like a projection
in 2D of the most external part of the robot. They do not take
advantage of the fact that the humanoid is not a cylinder with
the same shape at all heights. If the special shape and mobility
of a humanoid are taken into account, the robot can provide
a valid movement path on situations where a non humanoid
robot would remain stacked.

For example, [63] takes advantage of the humanoid shape
of an HRP2 robot to move along obstacles helping itself with
the furniture in the room. Examples include the robot resting
on a desk with an arm to move over an obstacle, or moving
on a narrow space between a chair and a table. On a similar
line of research [64] makes use of the special shape of a PR2
robot to navigate on cluttered environments.

VI. CONCLUSIONS

Even if navigation of humanoid robots in controlled envi-
ronments can be considered solved in a large amount of cases,
its application to real, dynamic, human environments is not.
Partial solutions to those problems have been described, but
no complete solution that solves them all is still available.
The current tendency is to combine different solutions into
a whole navigation system, like it is shown in the map-
ping+localization+path planning solutions of section II-C.

We identify as perception one of the biggest challenges in
humanoid navigation, since the perception system is the one
that allows the robot to detect the spaces where the robot
can safely move. Additionally to the sensor system, the robot
has to accommodate systems that infer collisions and react
accordingly.

We haven’t described mechanical problems that do also
appear when deploying robots in real environment and that
limit enormously the navigation solutions that can be provided
theoretically. A comparison of what can be done theoretically
with navigation software, and what can be physically done due
to the mechanical limitations of a robot, is work for the future.
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